18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic use of stem cells for cardiovascular disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell treatments are a desirable therapeutic option to regenerate myocardium and improve cardiac function after myocardial infarction. Several different types of cells have been explored, each with their own benefits and limitations. Induced pluripotent stem cells possess an embryonic-like state and therefore have a high proliferative capacity, but they also pose a risk of teratoma formation. Mesenchymal stem cells have been investigated from both bone marrow and adipose tissue. Their immunomodulatory characteristics may permit the use of allogeneic cells as universal donor cells in the future. Lastly, studies have consistently shown that cardiac stem cells are better able to express markers of cardiogenesis compared to other cell types, as well improve cardiac function. The ideal source of stem cells depends on multiple factors such as the ease of extraction/isolation, effectiveness of engraftment, ability to differentiate into cardiac lineages and effect on cardiac function. Although multiple studies highlight the benefits and limitations of each cell type and reinforce the successful potential use of these cells to regenerate damaged myocardium, more studies are needed to directly compare cells from various sources. It is interesting to note that research using stem cell therapies is also expanding to treat other cardiovascular diseases including non-ischemic cardiomyopathies.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Reprogramming of human somatic cells to pluripotency with defined factors.

          Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state.

            Nuclear transplantation can reprogramme a somatic genome back into an embryonic epigenetic state, and the reprogrammed nucleus can create a cloned animal or produce pluripotent embryonic stem cells. One potential use of the nuclear cloning approach is the derivation of 'customized' embryonic stem (ES) cells for patient-specific cell treatment, but technical and ethical considerations impede the therapeutic application of this technology. Reprogramming of fibroblasts to a pluripotent state can be induced in vitro through ectopic expression of the four transcription factors Oct4 (also called Oct3/4 or Pou5f1), Sox2, c-Myc and Klf4. Here we show that DNA methylation, gene expression and chromatin state of such induced reprogrammed stem cells are similar to those of ES cells. Notably, the cells-derived from mouse fibroblasts-can form viable chimaeras, can contribute to the germ line and can generate live late-term embryos when injected into tetraploid blastocysts. Our results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.

              Our aim was to investigate the safety and efficacy of intravenous allogeneic human mesenchymal stem cells (hMSCs) in patients with myocardial infarction (MI). Bone marrow-derived hMSCs may ameliorate consequences of MI, and have the advantages of preparation ease, allogeneic use due to immunoprivilege, capacity to home to injured tissue, and extensive pre-clinical support. We performed a double-blind, placebo-controlled, dose-ranging (0.5, 1.6, and 5 million cells/kg) safety trial of intravenous allogeneic hMSCs (Prochymal, Osiris Therapeutics, Inc., Baltimore, Maryland) in reperfused MI patients (n=53). The primary end point was incidence of treatment-emergent adverse events within 6 months. Ejection fraction and left ventricular volumes determined by echocardiography and magnetic resonance imaging were exploratory efficacy end points. Adverse event rates were similar between the hMSC-treated (5.3 per patient) and placebo-treated (7.0 per patient) groups, and renal, hepatic, and hematologic laboratory indexes were not different. Ambulatory electrocardiogram monitoring demonstrated reduced ventricular tachycardia episodes (p=0.025), and pulmonary function testing demonstrated improved forced expiratory volume in 1 s (p=0.003) in the hMSC-treated patients. Global symptom score in all patients (p=0.027) and ejection fraction in the important subset of anterior MI patients were both significantly better in hMSCs versus placebo subjects. In the cardiac magnetic resonance imaging substudy, hMSC treatment, but not placebo, increased left ventricular ejection fraction and led to reverse remodeling. Intravenous allogeneic hMSCs are safe in patients after acute MI. This trial provides pivotal safety and provisional efficacy data for an allogeneic bone marrow-derived stem cell in post-infarction patients. (Safety Study of Adult Mesenchymal Stem Cells [MSC] to Treat Acute Myocardial Infarction; NCT00114452).
                Bookmark

                Author and article information

                Contributors
                wfaiella@nosm.ca
                rony.atoui@gmail.com
                Journal
                Clin Transl Med
                Clin Transl Med
                Clinical and Translational Medicine
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2001-1326
                18 August 2016
                18 August 2016
                2016
                : 5
                : 34
                Affiliations
                Division of Cardiac Surgery, Health Sciences North, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1 Canada
                Author information
                http://orcid.org/0000-0001-8711-2109
                Article
                116
                10.1186/s40169-016-0116-3
                4990528
                27539581
                45a463e7-5e26-47c7-8532-1070e04f6577
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 10 April 2016
                : 10 August 2016
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                Medicine
                myocardial infarction,induced pluripotent stem cells,mesenchymal stem cells,cardiac stem cells,stem cell therapy,bone marrow,adipose tissue

                Comments

                Comment on this article