23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sirtuins and NAD + in the Development and Treatment of Metabolic and Cardiovascular Diseases

      1 , 1 , 2
      Circulation Research
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">The sirtuin family of nicotinamide adenine dinucleotide (NAD <sup>+</sup>)-dependent deacylases (SIRT1–7) are thought to be responsible, in large part, for the cardiometabolic benefits of lean diets and exercise and when upregulated can delay key aspects of aging. SIRT1, for example, protects against a decline in vascular endothelial function, metabolic syndrome, ischemia-reperfusion (IR) injury, obesity and cardiomyopathy, and SIRT3 is protective against dyslipidemia and IR injury. With increasing age, however, NAD <sup>+</sup> levels and sirtuin activity steadily decrease and the decline is further exacerbated by obesity and sedentary lifestyles. Activation of sirtuins or NAD <sup>+</sup> repletion induces angiogenesis, insulin sensitivity and other health benefits in a wide range of age-related cardiovascular and metabolic disease models. Human clinical trials testing agents that activate SIRT1 or boost NAD <sup>+</sup> levels are in progress and show promise in their ability to improve the health of cardiovascular and metabolic disease patients. </p>

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian sirtuins: biological insights and disease relevance.

          Aging is accompanied by a decline in the healthy function of multiple organ systems, leading to increased incidence and mortality from diseases such as type II diabetes mellitus, neurodegenerative diseases, cancer, and cardiovascular disease. Historically, researchers have focused on investigating individual pathways in isolated organs as a strategy to identify the root cause of a disease, with hopes of designing better drugs. Studies of aging in yeast led to the discovery of a family of conserved enzymes known as the sirtuins, which affect multiple pathways that increase the life span and the overall health of organisms. Since the discovery of the first known mammalian sirtuin, SIRT1, 10 years ago, there have been major advances in our understanding of the enzymology of sirtuins, their regulation, and their ability to broadly improve mammalian physiology and health span. This review summarizes and discusses the advances of the past decade and the challenges that will confront the field in the coming years.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

            Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.

              Nicotinamide adenine dinucleotide (NAD) levels decrease during aging and are involved in age-related metabolic decline. To date, the mechanism responsible for the age-related reduction in NAD has not been elucidated. Here we demonstrate that expression and activity of the NADase CD38 increase with aging and that CD38 is required for the age-related NAD decline and mitochondrial dysfunction via a pathway mediated at least in part by regulation of SIRT3 activity. We also identified CD38 as the main enzyme involved in the degradation of the NAD precursor nicotinamide mononucleotide (NMN) in vivo, indicating that CD38 has a key role in the modulation of NAD-replacement therapy for aging and metabolic diseases.
                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                September 14 2018
                September 14 2018
                : 123
                : 7
                : 868-885
                Affiliations
                [1 ]From the Department of Genetics, Harvard Medical School, Boston, MA (A.E.K., D.A.S.)
                [2 ]Department of Pharmacology, The University of New South Wales, Sydney, Australia (D.A.S.).
                Article
                10.1161/CIRCRESAHA.118.312498
                6206880
                30355082
                45aa34ec-31e9-4b3a-bc0b-ce8ca1d68886
                © 2018
                History

                Comments

                Comment on this article