61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenomic reconstruction of lactic acid bacteria: an update

      research-article
      1 , 1 , 3 , 2 , , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lactic acid bacteria (LAB) are important in the food industry for the production of fermented food products and in human health as commensals in the gut. However, the phylogenetic relationships among LAB species remain under intensive debate owing to disagreements among different data sets.

          Results

          We performed a phylogenetic analysis of LAB species based on 232 genes from 28 LAB genome sequences. Regardless of the tree-building methods used, combined analyses yielded an identical, well-resolved tree topology with strong supports for all nodes. The LAB species examined were divided into two groups. Group 1 included families Enterococcaceae and Streptococcaceae. Group 2 included families Lactobacillaceae and Leuconostocaceae. Within Group 2, the LAB species were divided into two clades. One clade comprised of the acidophilus complex of genus Lactobacillus and two other species, Lb. sakei and Lb. casei. In the acidophilus complex, Lb. delbrueckii separated first, while Lb. acidophilus/ Lb. helveticus and Lb. gasseri/ Lb. johnsonii were clustered into a sister group. The other clade within Group 2 consisted of the salivarius subgroup, including five species, Lb. salivarius, Lb. plantarum, Lb. brevis, Lb. reuteri, Lb. fermentum, and the genera Pediococcus, Oenococcus, and Leuconostoc. In this clade, Lb. salivarius was positioned most basally, followed by two clusters, one corresponding to Lb. plantarum/ Lb. brevis pair and Pediococcus, and the other including Oenococcus/ Leuconostoc pair and Lb. reuteri/ Lb. fermentum pair. In addition, phylogenetic utility of the 232 genes was analyzed to identify those that may be more useful than others. The genes identified as useful were related to translation and ribosomal structure and biogenesis (TRSB), and a three-gene set comprising genes encoding ultra-violet resistance protein B ( uvrB), DNA polymerase III ( polC) and penicillin binding protein 2B ( pbpB).

          Conclusions

          Our phylogenomic analyses provide important insights into the evolution and diversification of LAB species, and also revealed the phylogenetic utility of several genes. We infer that the occurrence of multiple, independent adaptation events in LAB species, have resulted in their occupation of various habitats. Further analyses of more genes from additional, representative LAB species are needed to reveal the molecular mechanisms underlying adaptation of LAB species to various environmental niches.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid substitution matrices from protein blocks.

            Methods for alignment of protein sequences typically measure similarity by using a substitution matrix with scores for all possible exchanges of one amino acid with another. The most widely used matrices are based on the Dayhoff model of evolutionary rates. Using a different approach, we have derived substitution matrices from about 2000 blocks of aligned sequence segments characterizing more than 500 groups of related proteins. This led to marked improvements in alignments and in searches using queries from each of the groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bayesian phylogenetic analysis of combined data.

              The recent development of Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) techniques has facilitated the exploration of parameter-rich evolutionary models. At the same time, stochastic models have become more realistic (and complex) and have been extended to new types of data, such as morphology. Based on this foundation, we developed a Bayesian MCMC approach to the analysis of combined data sets and explored its utility in inferring relationships among gall wasps based on data from morphology and four genes (nuclear and mitochondrial, ribosomal and protein coding). Examined models range in complexity from those recognizing only a morphological and a molecular partition to those having complex substitution models with independent parameters for each gene. Bayesian MCMC analysis deals efficiently with complex models: convergence occurs faster and more predictably for complex models, mixing is adequate for all parameters even under very complex models, and the parameter update cycle is virtually unaffected by model partitioning across sites. Morphology contributed only 5% of the characters in the data set but nevertheless influenced the combined-data tree, supporting the utility of morphological data in multigene analyses. We used Bayesian criteria (Bayes factors) to show that process heterogeneity across data partitions is a significant model component, although not as important as among-site rate variation. More complex evolutionary models are associated with more topological uncertainty and less conflict between morphology and molecules. Bayes factors sometimes favor simpler models over considerably more parameter-rich models, but the best model overall is also the most complex and Bayes factors do not support exclusion of apparently weak parameters from this model. Thus, Bayes factors appear to be useful for selecting among complex models, but it is still unclear whether their use strikes a reasonable balance between model complexity and error in parameter estimates.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2011
                1 January 2011
                : 11
                : 1
                Affiliations
                [1 ]State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China
                [2 ]Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources, Ministry of Education, Yunnan University, PR China
                [3 ]Graduate School of the Chinese Academy of Sciences, Beijing, PR China
                Article
                1471-2148-11-1
                10.1186/1471-2148-11-1
                3024227
                21194491
                45ab3b5d-210c-48d4-a8ff-dbd0eae28eda
                Copyright ©2011 Zhang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<url>http://creativecommons.org/licenses/by/2.0</url>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 June 2010
                : 1 January 2011
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article