37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A novel cGUUAg tetraloop structure with a conserved yYNMGg-type backbone conformation from cloverleaf 1 of bovine enterovirus 1 RNA

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 5′-terminal cloverleaf (CL)-like RNA structures are essential for the initiation of positive- and negative-strand RNA synthesis of entero- and rhinoviruses. SLD is the cognate RNA ligand of the viral proteinase 3C (3C pro), which is an indispensable component of the viral replication initiation complex. The structure of an 18mer RNA representing the apical stem and the cGUUAg D-loop of SLD from the first 5′-CL of BEV1 was determined in solution to a root-mean-square deviation (r.m.s.d.) (all heavy atoms) of 0.59 Å (PDB 1Z30). The first ( antiG) and last ( synA) nucleotide of the D-loop forms a novel ‘pseudo base pair’ without direct hydrogen bonds. The backbone conformation and the base-stacking pattern of the cGUUAg-loop, however, are highly similar to that of the coxsackieviral uCACGg D-loop (PDB 1RFR) and of the stable cUUCGg tetraloop (PDB 1F7Y) but surprisingly dissimilar to the structure of a cGUAAg stable tetraloop (PDB 1MSY), even though the cGU UAg BEV D-loop and the cGU AAg tetraloop differ by 1 nt only. Together with the presented binding data, these findings provide independent experimental evidence for our model [O. Ohlenschläger, J. Wöhnert, E. Bucci, S. Seitz, S. Häfner, R. Ramachandran, R. Zell and M. Görlach (2004) Structure, 12, 237–248] that the proteinase 3C pro recognizes structure rather than sequence.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          MOLMOL: a program for display and analysis of macromolecular structures.

          MOLMOL is a molecular graphics program for display, analysis, and manipulation of three-dimensional structures of biological macromolecules, with special emphasis on nuclear magnetic resonance (NMR) solution structures of proteins and nucleic acids. MOLMOL has a graphical user interface with menus, dialog boxes, and on-line help. The display possibilities include conventional presentation, as well as novel schematic drawings, with the option of combining different presentations in one view of a molecule. Covalent molecular structures can be modified by addition or removal of individual atoms and bonds, and three-dimensional structures can be manipulated by interactive rotation about individual bonds. Special efforts were made to allow for appropriate display and analysis of the sets of typically 20-40 conformers that are conventionally used to represent the result of an NMR structure determination, using functions for superimposing sets of conformers, calculation of root mean square distance (RMSD) values, identification of hydrogen bonds, checking and displaying violations of NMR constraints, and identification and listing of short distances between pairs of hydrogen atoms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NMR spectroscopy of RNA.

            NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops.

              The most frequently occurring RNA hairpins in 16S and 23S ribosomal RNA contain a tetranucleotide loop that has a GNRA consensus sequence. The solution structures of the GCAA and GAAA hairpins have been determined by nuclear magnetic resonance spectroscopy. Both loops contain an unusual G-A base pair between the first and last residue in the loop, a hydrogen bond between a G base and a phosphate, extensive base stacking, and a hydrogen bond between a sugar 2'-end OH and a base. These interactions explain the high stability of these hairpins and the sequence requirements for the variant and invariant nucleotides in the GNRA tetranucleotide loop family.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                6 April 2005
                : 33
                : 6
                : 2003-2011
                Affiliations
                Molekulare Biophysik/NMR-Spektroskopie, Institut für Molekulare Biotechnologie e.V. Beutenbergstraße 11, D-07745 Jena, Germany
                1Institut für Organische Chemie, Johann-Wolfgang-Goethe-Universität Marie-Curie-Straße 11, D-60439 Frankfurt/M., Germany
                2International University Bremen, School of Engineering and Science Campus Ring 1, D-28759 Bremen, Germany
                3Institut für Virologie und Antivirale Therapie, Friedrich-Schiller-Universität Winzerlaer Straße 10, D-07745 Jena, Germany
                Author notes
                *To whom correspondence should be addressed. Tel: +49 3641 656220; Fax: +49 3641 656225; Email: mago@ 123456imb-jena.de
                Article
                10.1093/nar/gki501
                1074726
                15814817
                45ae7129-a916-4755-8b09-2bbef7dd9a66
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oupjournals.org

                History
                : 23 December 2004
                : 07 March 2005
                : 21 March 2005
                Categories
                Article

                Genetics
                Genetics

                Comments

                Comment on this article