34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Analysis of Salicylic Acid Treatment in Rehmannia glutinosa Hairy Roots Using RNA-seq Technique for Identification of Genes Involved in Acteoside Biosynthesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rehmannia glutinosa is a common bulk medicinal material that has been widely used in China due to its active ingredients. Acteoside, one of the ingredients, has antioxidant, antinephritic, anti-inflammatory, hepatoprotective, immunomodulatory, and neuroprotective effects, is usually selected as a quality-control component for R. glutinosa herb in the Chinese Pharmacopeia. The acteoside biosynthesis pathway in R. glutinosa has not yet been clearly established. Herein, we describe the establishment of a genetic transformation system for R. glutinosa mediated by Agrobacterium rhizogenes. We screened the optimal elicitors that markedly increased acteoside accumulation in R. glutinosa hairy roots. We found that acteoside accumulation dramatically increased with the addition of salicylic acid (SA); the optimal SA dose was 25 μmol/L for hairy roots. RNA-seq was applied to analyze the transcriptomic changes in hairy roots treated with SA for 24 h in comparison with an untreated control. A total of 3,716, 4,018, and 2,715 differentially expressed transcripts (DETs) were identified in 0 h-vs.-12 h, 0 h-vs.-24 h, and 12 h-vs.-24 h libraries, respectively. KEGG pathway-based analysis revealed that 127 DETs were enriched in “phenylpropanoid biosynthesis.” Of 219 putative unigenes involved in acteoside biosynthesis, 54 were found to be up-regulated at at least one of the time points after SA treatment. Selected candidate genes were analyzed by quantitative real-time PCR (qRT-PCR) in hairy roots with SA, methyl jasmonate (MeJA), AgNO 3 (Ag +), and putrescine (Put) treatment. All genes investigated were up-regulated by SA treatment, and most candidate genes were weakly increased by MeJA to some degree. Furthermore, transcription abundance of eight candidate genes in tuberous roots of the high-acteoside-content (HA) cultivar QH were higher than those of the low-acteoside-content (LA) cultivar Wen 85-5. These results will pave the way for understanding the molecular basis of acteoside biosynthesis in R. glutinosa, and can serve as a basis for future validation studies.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Elicitor signal transduction leading to production of plant secondary metabolites.

          Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and other industrial materials. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Understanding signal transduction paths underlying elicitor-induced production of secondary metabolites is important for optimizing their commercial production. This paper summarizes progress made on several aspects of elicitor signal transduction leading to production of plant secondary metabolites, including: elicitor signal perception by various receptors of plants; avirulence determinants and corresponding plant R proteins; heterotrimeric and small GTP binding proteins; ion fluxes, especially Ca2+ influx, and Ca2+ signaling; medium alkalinization and cytoplasmic acidification; oxidative burst and reactive oxygen species; inositol trisphosphates and cyclic nucleotides (cAMP and cGMP); salicylic acid and nitric oxide; jasmonate, ethylene, and abscisic acid signaling; oxylipin signals such as allene oxide synthase-dependent jasmonate and hydroperoxide lyase-dependent C12 and C6 volatiles; as well as other lipid messengers such as lysophosphatidylcholine, phosphatidic acid, and diacylglycerol. All these signal components are employed directly or indirectly by elicitors for induction of plant secondary metabolite accumulation. Cross-talk between different signaling pathways is very common in plant defense response, thus the cross-talk amongst these signaling pathways, such as elicitor and jasmonate, jasmonate and ethylene, and each of these with reactive oxygen species, is discussed separately. This review also highlights the integration of multiple signaling pathways into or by transcription factors, as well as the linkage of the above signal components in elicitor signaling network through protein phosphorylation and dephosphorylation. Some perspectives on elicitor signal transduction and plant secondary metabolism at the transcriptome and metabolome levels are also presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RNA-Seq analysis in MeV

            Summary: RNA-Seq is an exciting methodology that leverages the power of high-throughput sequencing to measure RNA transcript counts at an unprecedented accuracy. However, the data generated from this process are extremely large and biologist-friendly tools with which to analyze it are sorely lacking. MultiExperiment Viewer (MeV) is a Java-based desktop application that allows advanced analysis of gene expression data through an intuitive graphical user interface. Here, we report a significant enhancement to MeV that allows analysis of RNA-Seq data with these familiar, powerful tools. We also report the addition to MeV of several RNA-Seq-specific functions, addressing the differences in analysis requirements between this data type and traditional gene expression data. These tools include automatic conversion functions from raw count data to processed RPKM or FPKM values and differential expression detection and functional annotation enrichment detection based on published methods. Availability: MeV version 4.7 is written in Java and is freely available for download under the terms of the open-source Artistic License version 2.0. The website (http://mev.tm4.org/) hosts a full user manual as well as a short quick-start guide suitable for new users. Contact: johnq@jimmy.harvard.edu
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acyltransferases in plants: a good time to be BAHD.

              Acylation is a common and biochemically significant modification of plant secondary metabolites. Plant BAHD acyltransferases constitute a large family of acyl CoA-utilizing enzymes whose products include small volatile esters, modified anthocyanins, as well as constitutive defense compounds and phytoalexins. The catalytic versatility of BAHD enzymes makes it very difficult to make functional predictions from primary sequence alone. Recent advances in genome sequencing and the availability of the first crystal structure of a BAHD member are, however, providing insights into the evolution and function of these acyltransferases within the plant kingdom.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                17 May 2017
                2017
                : 8
                : 787
                Affiliations
                [1] 1College of Agronomy, Henan Agricultural University Zhengzhou, China
                [2] 2College of Crop Sciences, Fujian Agriculture and Forestry University Fuzhou, China
                [3] 3School of Medicine, Henan University of Traditional Chinese Medicine Zhengzhou, China
                Author notes

                Edited by: Fumiya Kurosaki, University of Toyama, Japan

                Reviewed by: Heiko Rischer, VTT Technical Research Centre of Finland, Finland; Supaart Sirikantaramas, Chulalongkorn University, Thailand

                *Correspondence: Fengqing Wang heauzycxw@ 123456126.com

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.00787
                5434160
                28567046
                45b5523b-946f-4d44-b92a-3c22c0c5b4a4
                Copyright © 2017 Wang, Zhi, Zhang, Wang, Suo, Xie, Li, Zhang, Du, Gu and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 February 2017
                : 27 April 2017
                Page count
                Figures: 8, Tables: 2, Equations: 0, References: 76, Pages: 15, Words: 10980
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81473299
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                rehmannia glutinosa,acteoside,salicylic acid,rna-seq,hairy root,biosynthesis
                Plant science & Botany
                rehmannia glutinosa, acteoside, salicylic acid, rna-seq, hairy root, biosynthesis

                Comments

                Comment on this article