22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of a novel Screen–Enrich–Combine(-biomaterials) Circulating System to fill a 3D-printed open Ti6Al4V frame with mesenchymal stem cells/β-tricalcium phosphate to repair complex anatomical bone defects in load-bearing areas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Repairing complex anatomical load-bearing bone defects is difficult because it requires the restoration of the load-bearing function, reconstructing the anatomical shape, and repair by regenerated bone. We previously developed a Screen–Enrich–Combine(-biomaterials) Circulating System (SECCS) for rapid intraoperative enrichment of autologous bone marrow mesenchymal stem cells (MSCs) to enhance the osteogenic ability of porous bone substitutes. In this study, we prepared a 3D-printed Ti6A14V macroporous frame matching the defect shape to provide early load-bearing support and evaluated the efficacy of filling the frame with SECCS-processed MSCs/beta tricalcium phosphate (β-TCP) for long-term bone growth.

          Methods

          Fifteen 2-year-old goats were involved in this study, and the lateral part of their distal femur was removed by an electric saw and was fitted by a matching electron beam melting technology-prepared (EBM) Ti6Al4V frame. Three types of frames, filled with nothing, pure porous β-TCP, or SECCS-processed MSCs/β-TCP, were fixed onto the defect site. Repair efficacy was evaluated by X-ray radiography, computed tomography (CT), histology, and histomorphometry.

          Results

          In the basic regular hexagon printing unit, the combined side width (w) and the inscribed circle diameter (d) determines the printing frame’s mechanical strength. The compressive load was significantly higher for w=1.9 mm, d=4.4 mm than for w=1.7 mm, d=4.0 mm or w=2.0 mm, d=5.0 mm (P<0.05). The EBM-prepared Ti6Al4V defect-matched frame was well maintained 9 months after implantation. The MSCs successfully adhered to the wall of the porous β-TCP in the SECCS-processed group and had spread fully in the test samples. Each goat in the MSCs/β-TCP–the filled group, had approximately 31,321.7±22,554.7 of MSCs and a larger area of new bone growth inside the frame than the control and blank areas groups.

          Conclusions

          Filling the 3D-printed Ti6Al4V large-aperture frame with osteogenic materials achieved biological reconstruction over a larger area of regenerated bone to repair complex anatomical weight-bearing bone defects under the condition of early frame-supported load bearing. MSCs/β-TCP prepared by SECCS can be used as a filling material for this type of bone defect to obtain more efficacious bone repair.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          3D printing of high-strength aluminium alloys

          Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional (3D) printed scaffold and material selection for bone repair

            Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tissue-engineered bone regeneration.

              Bone lesions above a critical size become scarred rather than regenerated, leading to nonunion. We have attempted to obtain a greater degree of regeneration by using a resorbable scaffold with regeneration-competent cells to recreate an embryonic environment in injured adult tissues, and thus improve clinical outcome. We have used a combination of a coral scaffold with in vitro-expanded marrow stromal cells (MSC) to increase osteogenesis more than that obtained with the scaffold alone or the scaffold plus fresh bone marrow. The efficiency of the various combinations was assessed in a large segmental defect model in sheep. The tissue-engineered artificial bone underwent morphogenesis leading to complete recorticalization and the formation of a medullary canal with mature lamellar cortical bone in the most favorable cases. Clinical union never occurred when the defects were left empty or filled with the scaffold alone. In contrast, clinical union was obtained in three out of seven operated limbs when the defects were filled with the tissue-engineered bone.
                Bookmark

                Author and article information

                Journal
                Ann Transl Med
                Ann Transl Med
                ATM
                Annals of Translational Medicine
                AME Publishing Company
                2305-5839
                2305-5847
                March 2021
                March 2021
                : 9
                : 6
                : 454
                Affiliations
                [1 ]Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China;
                [2 ]Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University , Shanghai, China
                Author notes

                Contributions: (I) Conception and design: Y Gan, W Chu; (II) Administrative support: K Dai; (III) Provision of study materials or patients: W Jiang; (IV) Collection and assembly of data: W Chu, Z Liu, X Jiao; (V) Data analysis and interpretation: W Chu, Y Chang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

                [#]

                These authors contributed equally to this work.

                Correspondence to: Yaokai Gan. Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. Email: ganyk2004@ 123456126.com .
                Article
                atm-09-06-454
                10.21037/atm-20-6689
                8039683
                33850851
                45b743a3-dd2f-4e15-8221-bc09b6df8726
                2021 Annals of Translational Medicine. All rights reserved.

                Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0.

                History
                : 29 September 2020
                : 18 December 2020
                Categories
                Original Article

                3d printing,enrichment technique,mesenchymal stem cell (msc),biomaterial,bone repair

                Comments

                Comment on this article