320
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ADULT NEUROGENESIS IN THE MAMMALIAN CENTRAL NERVOUS SYSTEM

      1 , 1
      Annual Review of Neuroscience
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Forty years since the initial discovery of neurogenesis in the postnatal rat hippocampus, investigators have now firmly established that active neurogenesis from neural progenitors continues throughout life in discrete regions of the central nervous systems (CNS) of all mammals, including humans. Significant progress has been made over the past few years in understanding the developmental process and regulation of adult neurogenesis, including proliferation, fate specification, neuronal maturation, targeting, and synaptic integration of the newborn neurons. The function of this evolutionarily conserved phenomenon, however, remains elusive in mammals. Adult neurogenesis represents a striking example of structural plasticity in the mature CNS environment. Advances in our understanding of adult neurogenesis will not only shed light on the basic principles of adult plasticity, but also may lead to strategies for cell replacement therapy after injury or degenerative neurological diseases.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          More hippocampal neurons in adult mice living in an enriched environment.

          Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neuronal replacement from endogenous precursors in the adult brain after stroke.

            In the adult brain, new neurons are continuously generated in the subventricular zone and dentate gyrus, but it is unknown whether these neurons can replace those lost following damage or disease. Here we show that stroke, caused by transient middle cerebral artery occlusion in adult rats, leads to a marked increase of cell proliferation in the subventricular zone. Stroke-generated new neurons, as well as neuroblasts probably already formed before the insult, migrate into the severely damaged area of the striatum, where they express markers of developing and mature, striatal medium-sized spiny neurons. Thus, stroke induces differentiation of new neurons into the phenotype of most of the neurons destroyed by the ischemic lesion. Here we show that the adult brain has the capacity for self-repair after insults causing extensive neuronal death. If the new neurons are functional and their formation can be stimulated, a novel therapeutic strategy might be developed for stroke in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system

              Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
                Bookmark

                Author and article information

                Journal
                Annual Review of Neuroscience
                Annu. Rev. Neurosci.
                Annual Reviews
                0147-006X
                1545-4126
                July 21 2005
                July 21 2005
                : 28
                : 1
                : 223-250
                Affiliations
                [1 ]Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; email: ,
                Article
                10.1146/annurev.neuro.28.051804.101459
                16022595
                45cc7e73-a191-464c-a18f-42c0e8f078bd
                © 2005
                History

                Comments

                Comment on this article