13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prodromal Parkinson's Disease: The Decade Past, the Decade to Come

      1 , 2
      Movement Disorders
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past decade has seen a dramatic expansion of the field of prodromal PD. Ten years ago, there were only six known prodromal markers of disease, none of which had more than two studies documenting diagnostic value. We now have at least 16 markers, with as many as 10 prospective studies for a single marker. This review summarizes the major advances over the last decade and speculates about the advances we will see in the decade to come. The most notable advances over the last decade came through the study of high-risk cohorts (REM sleep behavior disorder and later genetic and autonomic cohorts), the generation of more representative population-based cohorts for studying prodromal PD, major advances in neuroimaging of early disease stages, the emerging likelihood that tissue biopsy will be able to diagnose prodromal PD, and the coalescence of prodromal markers into discrete criteria. As the next decade dawns, we await increasing precision of sensitivity and specificity estimates of known markers, the discovery of new biomarkers of prodromal disease, improvements in diagnosis using combined methods/criteria (with increasing recognition of prodromal PD as one stage of the full PD spectrum), and ultimately the development of neuroprotective therapy that can be provided at the earliest stages of disease. © 2019 International Parkinson and Movement Disorder Society.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study

          See Morris and Weil (doi:10.1093/brain/awz014) for a scientific commentary on this article. In a prospective multicentre study involving 1280 patients with idiopathic RBD, Postuma et al. show that approximately 6% of patients each year (>73.5% over 12 years) convert to full neurodegenerative disease. They test the predictive power of 21 prodromal markers of neurodegeneration, providing a template for planning neuroprotective trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression.

            Parkinson's disease varies widely in clinical manifestations, course of progression and biomarker profiles from person to person. Identification of distinct Parkinson's disease subtypes is of great priority to illuminate underlying pathophysiology, predict progression and develop more efficient personalized care approaches. There is currently no clear way to define and divide subtypes in Parkinson's disease. Using data from the Parkinson's Progression Markers Initiative, we aimed to identify distinct subgroups via cluster analysis of a comprehensive dataset at baseline (i.e. cross-sectionally) consisting of clinical characteristics, neuroimaging, biospecimen and genetic information, then to develop criteria to assign patients to a Parkinson's disease subtype. Four hundred and twenty-one individuals with de novo early Parkinson's disease were included from this prospective longitudinal multicentre cohort. Hierarchical cluster analysis was performed using data on demographic and genetic information, motor symptoms and signs, neuropsychological testing and other non-motor manifestations. The key classifiers in cluster analysis were a motor summary score and three non-motor features (cognitive impairment, rapid eye movement sleep behaviour disorder and dysautonomia). We then defined three distinct subtypes of Parkinson's disease patients: 223 patients were classified as 'mild motor-predominant' (defined as composite motor and all three non-motor scores below the 75th percentile), 52 as 'diffuse malignant' (composite motor score plus either ≥1/3 non-motor score >75th percentile, or all three non-motor scores >75th percentile) and 146 as 'intermediate'. On biomarkers, people with diffuse malignant Parkinson's disease had the lowest level of cerebrospinal fluid amyloid-β (329.0 ± 96.7 pg/ml, P = 0.006) and amyloid-β/total-tau ratio (8.2 ± 3.0, P = 0.032). Data from deformation-based magnetic resonance imaging morphometry demonstrated a Parkinson's disease-specific brain network had more atrophy in the diffuse malignant subtype, with the mild motor-predominant subtype having the least atrophy. Although disease duration at initial visit and follow-up time were similar between subtypes, patients with diffuse malignant Parkinson's disease progressed faster in overall prognosis (global composite outcome), with greater decline in cognition and in dopamine functional neuroimaging after an average of 2.7 years. In conclusion, we introduce new clinical criteria for subtyping Parkinson's disease based on a comprehensive list of clinical manifestations and biomarkers. This clinical subtyping can now be applied to individual patients for use in clinical practice using baseline clinical information. Even though all participants had a recent diagnosis of Parkinson's disease, patients with the diffuse malignant subtype already demonstrated a more profound dopaminergic deficit, increased atrophy in Parkinson's disease brain networks, a more Alzheimer's disease-like cerebrospinal fluid profile and faster progression of motor and cognitive deficits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association of olfactory dysfunction with risk for future Parkinson's disease.

              Although olfactory dysfunction is commonly associated with Parkinson's disease (PD), it is not known whether such dysfunction can predate the onset of clinical PD in a community-based population. This study examines the association of olfactory dysfunction with future development of PD in Honolulu-Asia Aging Study cohort members Olfaction was assessed from 1991 to 1996 in 2,267 men in the Honolulu-Asia Aging Study aged 71 to 95 years who were free of clinical PD and dementia at the time of olfaction testing. Participants were followed for up to 8 years for incident PD RESULTS: In the course of follow-up, 35 men were diagnosed with PD (24.6/10,000 person-years). The average age at the time of diagnosis was 82.9 +/- 3.8 (range, 76-93) years, and the average time to a diagnosis was 4.0 +/- 1.9 (range, 1-8) years. During the first 4 years of follow-up, age-adjusted incidence of PD declined from 54.5/10,000 person-years in the lowest quartile of odor identification to 26.6, 8.2, and 8.4/10,000 person-years in the second, third, and fourth quartiles, respectively (p < 0.001 for trend). After adjustment for age and other potential confounders, the odds ratios for PD in the lowest quartile was 5.2 (95% confidence interval, 1.5-25.6) compared with the top two quartiles. This relation was not evident beyond 4 years of follow-up. Impaired olfaction can predate clinical PD in men by at least 4 years and may be a useful screening tool to detect those at high risk for development of PD in later life.
                Bookmark

                Author and article information

                Journal
                Movement Disorders
                Mov Disord
                Wiley
                0885-3185
                1531-8257
                December 17 2018
                May 2019
                March 28 2019
                May 2019
                : 34
                : 5
                : 665-675
                Affiliations
                [1 ]Department of NeurologyMontreal General Hospital Montreal, Quebec Canada
                [2 ]Department of NeurologyChristian‐Albrechts‐University of Kiel Kiel Germany
                Article
                10.1002/mds.27670
                30919499
                45d10d49-fe26-4454-9714-a3e88f90ca8b
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article