37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin, A Potential Therapeutic Candidate for Anterior Segment Eye Diseases: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Curcumin, the major curcuminoid of the turmeric, has been extensively used in many countries since ancient time for preventing and/or treating a multitude of diseases. This review is to illustrate the researches on the properties of curcumin and its potential therapeutic efficacy in major anterior segment eye diseases. The bio-medical potential of curcumin is restricted because of its low solubility and digestive bioavailability. This review will discuss promising research in improving curcumin bioavailability through structural modification. In vitro and in vivo research made progress in studying the beneficial effects of curcumin on major anterior segment eye diseases, including anti-angiogenesis effect in corneal diseases; anti-inflammation or anti-allergy effects in dry eye disease, conjunctivitis, anterior uveitis; anti-proliferation and pro-apoptosis effects in pterygium; anti-oxidative stress, anti-osmotic stress, anti-lipid peroxidation, pro-apoptosis, regulating calcium homeostasis, sequestrating free radicals, protein modification and degradation effects in cataracts; neuroprotective effects in glaucoma. Curcumin exhibited to be a potent therapeutic candidate for treating those anterior segment eye diseases.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple biological activities of curcumin: a short review.

          Turmeric (Curcuma longa rhizomes), commonly used as a spice is well documented for its medicinal properties in Indian and Chinese systems of medicine. It has been widely used for the treatment of several diseases. Epidemiological observations, though inconclusive, are suggestive that turmeric consumption may reduce the risk of some form of cancers and render other protective biological effects in humans. These biological effects of turmeric have been attributed to its constituent curcumin that has been widely studied for its anti-inflammatory, anti-angiogenic, anti-oxidant, wound healing and anti-cancer effects. As a result of extensive epidemiological, clinical, and animal studies several molecular mechanisms are emerging that elucidate multiple biological effects of curcumin. This review summarizes the most interesting in vitro and in vivo studies on the biological effects of curcumin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of inflammation and redox signaling by dietary polyphenols.

            Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress-induced cataract: mechanism of action.

              This review examines the hypothesis that oxidative stress is an initiating factor for the development of maturity onset cataract and describes the events leading to lens opacification. Data are reviewed that indicate that extensive oxidation of lens protein and lipid is associated with human cataract found in older individuals whereas little oxidation (and only in membrane components) is found in control subjects of similar age. A significant proportion of lenses and aqueous humor taken from cataract patients have elevated H2O2 levels. Because H2O2, at concentrations found in cataract, can cause lens opacification and produces a pattern of oxidation similar to that found in cataract, it is concluded that H2O2 is the major oxidant involved in cataract formation. This viewpoint is further supported by experiments showing that cataract formation in organ culture caused by photochemically generated superoxide radical, H2O2, and hydroxyl radical is completely prevented by the addition of a GSH peroxidase mimic. The damage caused by oxidative stress does not appear to be reversible and there is an inverse relationship between the stress period and the time required for loss of transparency and degeneration of biochemical parameters such as ATP, GPD, nonprotein thiol, and hydration. After exposure to oxidative stress, the redox set point of the single layer of the lens epithelial cells (but not the remainder of the lens) quickly changes, going from a strongly reducing to an oxidizing environment. Almost concurrent with this change is extensive damage to DNA and membrane pump systems, followed by loss of epithelial cell viability and death by necrotic and apoptotic mechanisms. The data suggest that the epithelial cell layer is the initial site of attack by oxidative stress and that involvement of the lens fibers follows, leading to cortical cataract.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                14 February 2017
                2017
                : 8
                : 66
                Affiliations
                [1] 1Department of Ophthalmology, The First Hospital of Jilin University Changchun, China
                [2] 2Department of Neurosurgery, The People’s Hospital of Jilin Province Changchun, China
                [3] 3Department of Molecular Pathology, Icahn School of Medicine at Mount Sinai, Manhattan NY, USA
                [4] 4Department of Gastroenterology, The First Hospital of Jilin University Changchun, China
                [5] 5Department of Radiology, The First Hospital of Jilin University Changchun, China
                Author notes

                Edited by: Adolfo Andrade-Cetto, National Autonomous University of Mexico, Mexico

                Reviewed by: Kayo Masuko, Sanno Medical Center, Japan; Pinarosa Avato, University of Bari, Italy

                *Correspondence: Cheng-Wei Lu, lcwchina800@ 123456sina.com Dan-Dan Zhou, zhoudan0928@ 123456sohu.com

                These authors are co-first authors.

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2017.00066
                5306202
                28261099
                45d4e5a0-18ac-4b2f-9689-7801651de795
                Copyright © 2017 Liu, Hao, Xie, Mukhtar, Zhang, Malik, Lu and Zhou.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 November 2016
                : 01 February 2017
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 108, Pages: 13, Words: 0
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                curcumin,corneal diseases,dry eye,conjunctivitis,anterior uveitis,pterygium,cataract,glaucoma

                Comments

                Comment on this article