3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Isolation of circulating tumor cells and detection of EGFR mutations in patients with non-small-cell lung cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of the present study was to develop a procedure for the isolation of circulating tumor cells (CTCs), and to evaluate its application in the detection of epidermal growth factor receptor (EGFR) mutations, and potential heterogeneity in patients with non-small-cell lung cancer (NSCLC). Peripheral blood samples were collected from 91 patients with lung cancer, 10 patients with benign disease and 10 healthy volunteers. CTCs were enriched by positive immunomagnetic separation, detected by immunocytochemistry, and processed for single-cell capture. Pure CTC DNA was amplified, and the EGFR gene was analyzed using the amplification refractory mutation system (ARMS) and digital polymerase chain reaction (dPCR). The CTC capture rate in patients with lung cancer was 61.5% (56/91), whereas no CTCs were detected in patients with benign lung disease or in healthy volunteers. The CTC-positive detection rates were 69.3% (52/75) and 25.0% (4/16) in patients with TNM stage III and IV disease, respectively. Markedly more CTCs were captured from patients with small-cell lung cancer compared with patients with other types of cancer. In patients who were positive for EGFR mutations, the detection rate of these mutations was low (16.67%, 2/12), at the single CTC level. The sensitivity increased as the number of CTCs per sample increased. A total of four patients displayed consistent detection of EGFR mutations at the 10-cell level, and one patient exhibited a clear, inconsistent and rare mutation (G719×) between CTCs. A simplified technique for isolating CTCs from blood was established, though multiple CTCs were required to sensitively detect mutations in these cells. The detection of EGFR mutations in CTCs and tissue specimens was generally homogeneous, and therefore, the CTC-level mutation analysis may potentially contribute to the discovery of heterogeneous mutations.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases.

          The purpose of this study was to determine the accuracy, precision, and linearity of the CellSearch system and evaluate the number of circulating tumor cells (CTCs) per 7.5 mL of blood in healthy subjects, patients with nonmalignant diseases, and patients with a variety of metastatic carcinomas. The CellSearch system was used to enumerate CTCs in 7.5 mL of blood. Blood samples spiked with cells from tumor cell lines were used to establish analytical accuracy, reproducibility, and linearity. Prevalence of CTCs was determined in blood from 199 patients with nonmalignant diseases, 964 patients with metastatic carcinomas, and 145 healthy donors. Enumeration of spiked tumor cells was linear over the range of 5 to 1,142 cells, with an average recovery of >/=85% at each spike level. Only 1 of the 344 (0.3%) healthy and nonmalignant disease subjects had >/=2 CTCs per 7.5 mL of blood. In 2,183 blood samples from 964 metastatic carcinoma patients, CTCs ranged from 0 to 23,618 CTCs per 7.5 mL (mean, 60 +/- 693 CTCs per 7.5 mL), and 36% (781 of 2,183) of the specimens had >/=2 CTCs. Detection of >/=2 CTCs occurred at the following rates: 57% (107 of 188) of prostate cancers, 37% (489 of 1,316) of breast cancers, 37% (20 of 53) of ovarian cancers, 30% (99 of 333) of colorectal cancers, 20% (34 of 168) of lung cancers, and 26% (32 of 125) of other cancers. The CellSearch system can be standardized across multiple laboratories and may be used to determine the clinical utility of CTCs. CTCs are extremely rare in healthy subjects and patients with nonmalignant diseases but present in various metastatic carcinomas with a wide range of frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of mutations in EGFR in circulating lung-cancer cells.

            The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating tumor cells: liquid biopsy of cancer.

              The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include (a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information), (b) stratification and real-time monitoring of therapies, (c) identification of therapeutic targets and resistance mechanisms, and (d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular-characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC-detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice. © 2012 American Association for Clinical Chemistry
                Bookmark

                Author and article information

                Journal
                Oncol Lett
                Oncol Lett
                OL
                Oncology Letters
                D.A. Spandidos
                1792-1074
                1792-1082
                April 2019
                05 February 2019
                05 February 2019
                : 17
                : 4
                : 3799-3807
                Affiliations
                [1 ]Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
                [2 ]Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
                [3 ]Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, P.R. China
                Author notes
                Correspondence to: Dr Hongtao Zhang, Department of Central Laboratory, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 97 Machang Road, Tongzhou, Beijing 101149, P.R. China, E-mail: zhtbeijing@ 123456163.com
                Dr Shucai Zhang, Department of Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 97 Machang Road, Tongzhou, Beijing 101149, P.R. China, E-mail: sczhang6304@ 123456163.com
                Article
                OL-0-0-10016
                10.3892/ol.2019.10016
                6403494
                45e51dfc-34ba-45e8-ab99-2689baadaf91
                Copyright: © Zhang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 15 March 2018
                : 02 November 2018
                Categories
                Articles

                Oncology & Radiotherapy
                circulating tumor cells,epidermal growth factor receptor mutation,homogeneity,non-small-cell lung cancer

                Comments

                Comment on this article