2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photoacoustic imaging of a human vertebra: implications for guiding spinal fusion surgeries

      ,

      Physics in Medicine & Biology

      IOP Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">It is well known that there are structural differences between cortical and cancellous bone. However, spinal surgeons currently have no reliable method to non-invasively determine these differences in real-time when choosing the optimal starting point and trajectory to insert pedicle screws and avoid surgical complications associated with breached or weakened bone. This paper explores 3D photoacoustic imaging of a human vertebra to noninvasively differentiate cortical from cancellous bone for this surgical task. We observed that signals from the cortical bone tend to appear as compact, high-amplitude signals, while signals from the cancellous bone have lower amplitudes and are more diffuse. In addition, we discovered that the location of the light source for photoacoustic imaging is a critical parameter that can be adjusted to non-invasively determine the optimal entry point into the pedicle. Once inside the pedicle, statistically significant differences in the contrast and SNR of signals originating from the cancellous core of the pedicle (when compared to signals originating from the surrounding cortical bone) were obtained with laser energies of 0.23–2.08 mJ ( <i>p</i> &lt; 0.05). Similar quantitative differences were observed with an energy of 1.57 mJ at distances ≥6 mm from the cortical bone of the pedicle. These quantifiable differences between cortical and cancellous bone (when imaging with an ultrasound probe in direct contact with each bone type) can potentially be used to ensure an optimal trajectory during surgery. Our results are promising for the introduction and development of photoacoustic imaging systems to overcome a wide range of longstanding challenges with spinal surgeries, including challenges with the occurrence of bone breaches due to misplaced pedicle screws. </p>

          Related collections

          Most cited references 36

          • Record: found
          • Abstract: found
          • Article: not found

          Accuracy of pedicle screw placement in lumbar vertebrae.

          The location of pedicle screws (n = 42) in four human specimens of the lumbar spine and in 30 patients (n = 131 screws) after lumbar spinal fusion was assessed using computed tomography. To determine the accuracy of pedicle screw placement in lumbar vertebrae and the reproducibility and repeatability of the computed tomography examination. Failures in the placement of transpedicular screws for lumbar fusion are reported. The evaluation of such screws using computed tomography examination has not been investigated. After surgery, the specimens were dissected in transversal slices to observe macroscopically the location of the pedicle screw and to correlate these observations with the computed tomography images. All patients were examined by one observer. To determine the reproducibility and repeatability of the computed tomography examination, two observers studied computed tomography images of 12 patients (n = 58 screws) twice within 3 months. In the specimens, 10 screws were observed to penetrate the medial wall of the pedicle. This correlated fully with the images. In the patients' group, 40% of all screws penetrated the cortex of the vertebra. Of all screws, 29% penetrated the medial wall of the pedicle. From the computed tomography images, it appeared that a deviation of more than 6 mm medially was a high risk for nerve root damage. Three months after his first examination, Observer 1 documented a different position in three of 58 screws (kappa = 0.90). Observer 2 found a different position in eight screws (kappa = 0.65). The comparison between the reviews of the two observers showed a different opinion for the first evaluation, four disagreements (2-4 mm) and 17 disagreements (0-2 mm; kappa = 0.34), and for the second evaluation, four disagreements (2-4 mm) and 12 disagreements (0-2 mm; kappa = 0.43). Correct placement of transpedicular screws for spinal fusion seems to be more difficult than it looks. The computed tomography scanning is useful for differential diagnosis of postoperative radicular syndromes after lumbar transpedicular fixation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Lumbar Spinal Fusion

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In vivo visualization of prostate brachytherapy seeds with photoacoustic imaging

              Abstract. We conducted a canine study to investigate the in vivo feasibility of photoacoustic imaging for intraoperative updates to brachytherapy treatment plans. A fiber coupled to a 1064-nm Nd:YAG laser was inserted into high-dose-rate brachytherapy needles, which diffused light spherically. These needles were inserted through the perineum into the prostate for interstitial light delivery and the resulting acoustic waves were detected with a transrectal ultrasound probe. Postoperative computed tomography images and ex vivo photoacoustic images confirmed seed locations. Limitations with insufficient light delivery were mitigated with short-lag spatial coherence (SLSC) beamforming, providing a 10–20 dB contrast improvement over delay-and-sum (DAS) beamforming for pulse energies ranging from 6.8 to 10.5 mJ with a fiber-seed distance as large as 9.5 mm. For the same distance and the same range of energy densities, signal-to-noise ratios (SNRs) were similar while the contrast-to-noise ratio (CNR) was higher in SLSC compared to DAS images. Challenges included visualization of signals associated with the interstitial fiber tip and acoustic reverberations between seeds separated by ≤2 mm. Results provide insights into the potential for clinical translation to humans.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Physics in Medicine & Biology
                Phys. Med. Biol.
                IOP Publishing
                1361-6560
                July 01 2018
                July 11 2018
                : 63
                : 14
                : 144001
                Article
                10.1088/1361-6560/aacdd3
                6097631
                29923832
                © 2018

                Comments

                Comment on this article