3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reliabilities of Genomic Prediction for Young Stock Survival Traits Using 54K SNP Chip Augmented With Additional Single-Nucleotide Polymorphisms Selected From Imputed Whole-Genome Sequencing Data

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigated effects of integrating single-nucleotide polymorphisms (SNPs) selected based on previous genome-wide association studies (GWASs), from imputed whole-genome sequencing (WGS) data, in the conventional 54K chip on genomic prediction reliability of young stock survival (YSS) traits in dairy cattle. The WGS SNPs included two groups of SNP sets that were selected based on GWAS in the Danish Holstein for YSS index (YSS_SNPs, n = 98) and SNPs chosen as peaks of quantitative trait loci for the traits of Nordic total merit index in Denmark–Finland–Sweden dairy cattle populations (DFS_SNPs, n = 1,541). Additionally, the study also investigated the possibility of improving genomic prediction reliability for survival traits by modeling the SNPs within recessive lethal haplotypes (LET_SNP, n = 130) detected from the 54K chip in the Nordic Holstein. De-regressed proofs (DRPs) were obtained from 6,558 Danish Holstein bulls genotyped with either 54K chip or customized LD chip that includes SNPs in the standard LD chip and some of the selected WGS SNPs. The chip data were subsequently imputed to 54K SNP together with the selected WGS SNPs. Genomic best linear unbiased prediction (GBLUP) models were implemented to predict breeding values through either pooling the 54K and selected WGS SNPs together as one genetic component (a one-component model) or considering 54K SNPs and selected WGS SNPs as two separate genetic components (a two-component model). Across all the traits, inclusion of each of the selected WGS SNP sets led to negligible improvements in prediction accuracies (0.17 percentage points on average) compared to prediction using only 54K. Similarly, marginal improvement in prediction reliability was obtained when all the selected WGS SNPs were included (0.22 percentage points). No further improvement in prediction reliability was observed when considering random regression on genotype code of recessive lethal alleles in the model including both groups of the WGS SNPs. Additionally, there was no difference in prediction reliability from integrating the selected WGS SNP sets through the two-component model compared to the one-component GBLUP.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A new look at the statistical model identification

          IEEE Transactions on Automatic Control, 19(6), 716-723
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Next-generation genotype imputation service and methods.

            Genotype imputation is a key component of genetic association studies, where it increases power, facilitates meta-analysis, and aids interpretation of signals. Genotype imputation is computationally demanding and, with current tools, typically requires access to a high-performance computing cluster and to a reference panel of sequenced genomes. Here we describe improvements to imputation machinery that reduce computational requirements by more than an order of magnitude with no loss of accuracy in comparison to standard imputation tools. We also describe a new web-based service for imputation that facilitates access to new reference panels and greatly improves user experience and productivity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient methods to compute genomic predictions.

              P VanRaden (2008)
              Efficient methods for processing genomic data were developed to increase reliability of estimated breeding values and to estimate thousands of marker effects simultaneously. Algorithms were derived and computer programs tested with simulated data for 2,967 bulls and 50,000 markers distributed randomly across 30 chromosomes. Estimation of genomic inbreeding coefficients required accurate estimates of allele frequencies in the base population. Linear model predictions of breeding values were computed by 3 equivalent methods: 1) iteration for individual allele effects followed by summation across loci to obtain estimated breeding values, 2) selection index including a genomic relationship matrix, and 3) mixed model equations including the inverse of genomic relationships. A blend of first- and second-order Jacobi iteration using 2 separate relaxation factors converged well for allele frequencies and effects. Reliability of predicted net merit for young bulls was 63% compared with 32% using the traditional relationship matrix. Nonlinear predictions were also computed using iteration on data and nonlinear regression on marker deviations; an additional (about 3%) gain in reliability for young bulls increased average reliability to 66%. Computing times increased linearly with number of genotypes. Estimation of allele frequencies required 2 processor days, and genomic predictions required <1 d per trait, and traits were processed in parallel. Information from genotyping was equivalent to about 20 daughters with phenotypic records. Actual gains may differ because the simulation did not account for linkage disequilibrium in the base population or selection in subsequent generations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                19 July 2021
                2021
                : 12
                : 667300
                Affiliations
                Center for Quantitative Genetics and Genomics, Aarhus University , Tjele, Denmark
                Author notes

                Edited by: Ruidong Xiang, The University of Melbourne, Australia

                Reviewed by: Christian Maltecca, North Carolina State University, United States; Renata Veroneze, Universidade Federal de Viçosa, Brazil

                *Correspondence: Grum Gebreyesus, grum.gebreyesus@ 123456qgg.au.dk

                This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2021.667300
                8326759
                34349779
                46046271-80e4-4d54-b90f-bd1c7ca86bbb
                Copyright © 2021 Gebreyesus, Lund, Sahana and Su.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 February 2021
                : 23 June 2021
                Page count
                Figures: 2, Tables: 4, Equations: 9, References: 35, Pages: 10, Words: 0
                Funding
                Funded by: Ministeriet for FØ devarer, Landbrug og Fiskeri 10.13039/100008396
                Categories
                Genetics
                Original Research

                Genetics
                young stock survival,genomic prediction,gwas,whole-genome sequencing,recessive lethal alleles

                Comments

                Comment on this article