29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SMYD2 promoter DNA methylation is associated with abdominal aortic aneurysm (AAA) and SMYD2 expression in vascular smooth muscle cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Abdominal aortic aneurysm (AAA) is a deadly cardiovascular disease characterised by the gradual, irreversible dilation of the abdominal aorta. AAA is a complex genetic disease but little is known about the role of epigenetics. Our objective was to determine if global DNA methylation and CpG-specific methylation at known AAA risk loci is associated with AAA, and the functional effects of methylation changes.

          Results

          We assessed global methylation in peripheral blood mononuclear cell DNA from 92 individuals with AAA and 93 controls using enzyme-linked immunosorbent assays, identifying hyper-methylation in those with large AAA and a positive linear association with AAA diameter ( P < 0.0001, R 2 = 0.3175).

          We then determined CpG methylation status of regulatory regions in genes located at AAA risk loci identified in genome-wide association studies, using bisulphite next-generation sequencing (NGS) in vascular smooth muscle cells (VSMCs) taken from aortic tissues of 44 individuals (24 AAAs and 20 controls). In IL6R, 2 CpGs were hyper-methylated ( P = 0.0145); in ERG, 13 CpGs were hyper-methylated ( P = 0.0005); in SERPINB9, 6 CpGs were hypo-methylated ( P = 0.0037) and 1 CpG was hyper-methylated ( P = 0.0098); and in SMYD2, 4 CpGs were hypo-methylated ( P = 0.0012).

          RT-qPCR was performed for each differentially methylated gene on mRNA from the same VSMCs and compared with methylation. This analysis revealed downregulation of SMYD2 and SERPINB9 in AAA, and a direct linear relationship between SMYD2 promoter methylation and SMYD2 expression ( P = 0.038). Furthermore, downregulation of SMYD2 at the site of aneurysm in the aortic wall was further corroborated in 6 of the same samples used for methylation and gene expression analysis with immunohistochemistry.

          Conclusions

          This study is the first to assess DNA methylation in VSMCs from individuals with AAA using NGS, and provides further evidence there is an epigenetic basis to AAA. Our study shows that methylation status of the SMYD2 promoter may be linked with decreased SMYD2 expression in disease pathobiology. In support of our work, downregulated SMYD2 has previously been associated with adverse cardiovascular physiology and inflammation, which are both hallmarks of AAA. The identification of such adverse epigenetic modifications could potentially contribute towards the development of epigenetic treatment strategies in the future.

          Electronic supplementary material

          The online version of this article (10.1186/s13148-018-0460-9) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Gene body methylation can alter gene expression and is a therapeutic target in cancer.

          DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression, yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the overexpression of genes, many of which are involved in metabolic processes regulated by c-MYC. Downregulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may, therefore, be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene overexpression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The DNA methyltransferases of mammals.

            T Bestor (2000)
            The biological significance of 5-methylcytosine was in doubt for many years, but is no longer. Through targeted mutagenesis in mice it has been learnt that every protein shown by biochemical tests to be involved in the establishment, maintenance or interpretation of genomic methylation patterns is encoded by an essential gene. A human genetic disorder (ICF syndrome) has recently been shown to be caused by mutations in the DNA methyltransferase 3B (DNMT3B) gene. A second human disorder (Rett syndrome) has been found to result from mutations in the MECP2 gene, which encodes a protein that binds to methylated DNA. Global genome demethylation caused by targeted mutations in the DNA methyltransferase-1 (Dnmt1) gene has shown that cytosine methylation plays essential roles in X-inactivation, genomic imprinting and genome stabilization. The majority of genomic 5-methylcytosine is now known to enforce the transcriptional silence of the enormous burden of transposons and retroviruses that have accumulated in the mammalian genome. It has also become clear that programmed changes in methylation patterns are less important in the regulation of mammalian development than was previously believed. Although a number of outstanding questions have yet to be answered (one of these questions involves the nature of the cues that designate sites for methylation at particular stages of gametogenesis and early development), studies of DNA methyltransferases are likely to provide further insights into the biological functions of genomic methylation patterns.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repression of p53 activity by Smyd2-mediated methylation.

              Specific sites of lysine methylation on histones correlate with either activation or repression of transcription. The tumour suppressor p53 (refs 4-7) is one of only a few non-histone proteins known to be regulated by lysine methylation. Here we report a lysine methyltransferase, Smyd2, that methylates a previously unidentified site, Lys 370, in p53. This methylation site, in contrast to the known site Lys 372, is repressing to p53-mediated transcriptional regulation. Smyd2 helps to maintain low concentrations of promoter-associated p53. We show that reducing Smyd2 concentrations by short interfering RNA enhances p53-mediated apoptosis. We find that Set9-mediated methylation of Lys 372 inhibits Smyd2-mediated methylation of Lys 370, providing regulatory cross-talk between post-translational modifications. In addition, we show that the inhibitory effect of Lys 372 methylation on Lys 370 methylation is caused, in part, by blocking the interaction between p53 and Smyd2. Thus, similar to histones, p53 is subject to both activating and repressing lysine methylation. Our results also predict that Smyd2 may function as a putative oncogene by methylating p53 and repressing its tumour suppressive function.
                Bookmark

                Author and article information

                Contributors
                bt96@le.ac.uk
                Journal
                Clin Epigenetics
                Clin Epigenetics
                Clinical Epigenetics
                BioMed Central (London )
                1868-7075
                1868-7083
                2 March 2018
                2 March 2018
                2018
                : 10
                : 29
                Affiliations
                [1 ]ISNI 0000 0004 1936 8411, GRID grid.9918.9, Department of Cardiovascular Sciences and the NIHR Leicester Biomedical Research Centre, , University of Leicester, ; Leicester, LE2 7LX UK
                [2 ]ISNI 0000 0004 1936 8411, GRID grid.9918.9, Department of Genetics and Genome Biology, , University of Leicester, ; Leicester, LE1 7RH UK
                Article
                460
                10.1186/s13148-018-0460-9
                5833080
                29507647
                46119d00-aef2-4513-bf2c-bd3d6ef33a45
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 October 2017
                : 20 February 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000274, British Heart Foundation;
                Award ID: CS/14/2/30841
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000272, National Institute for Health Research;
                Award ID: IS_BRU_0211_20033
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Genetics
                epigenetics,vascular disease,aneurysm,inflammation
                Genetics
                epigenetics, vascular disease, aneurysm, inflammation

                Comments

                Comment on this article