19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Skin Parameter Map Retrieval from a Dedicated Multispectral Imaging System Applied to Dermatology/Cosmetology

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo quantitative assessment of skin lesions is an important step in the evaluation of skin condition. An objective measurement device can help as a valuable tool for skin analysis. We propose an explorative new multispectral camera specifically developed for dermatology/cosmetology applications. The multispectral imaging system provides images of skin reflectance at different wavebands covering visible and near-infrared domain. It is coupled with a neural network-based algorithm for the reconstruction of reflectance cube of cutaneous data. This cube contains only skin optical reflectance spectrum in each pixel of the bidimensional spatial information. The reflectance cube is analyzed by an algorithm based on a Kubelka-Munk model combined with evolutionary algorithm. The technique allows quantitative measure of cutaneous tissue and retrieves five skin parameter maps: melanin concentration, epidermis/dermis thickness, haemoglobin concentration, and the oxygenated hemoglobin. The results retrieved on healthy participants by the algorithm are in good accordance with the data from the literature. The usefulness of the developed technique was proved during two experiments: a clinical study based on vitiligo and melasma skin lesions and a skin oxygenation experiment (induced ischemia) with healthy participant where normal tissues are recorded at normal state and when temporary ischemia is induced.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy.

          Noninvasive and real-time analysis of skin properties is useful in a wide variety of applications. In particular, the quantitative assessment of skin in terms of hemoglobin and melanin content, as well as in terms of its light scattering properties, is a challenging problem in dermatology. We present here a technique for examining human skin, based on the in vivo measurement of diffuse reflectance spectra in the visible and near-infrared ranges of the electromagnetic spectrum. Spectra were measured by means of a fiber optic probe, and they were analyzed using an analytical model of light diffusion in the skin. The results of the analysis indicate that it is possible to obtain quantitative information about hemoglobin and melanin content, as well as basic information regarding the scattering properties of the skin.
            • Record: found
            • Abstract: found
            • Article: not found

            The optics of human skin.

            An integrated review of the transfer of optical radiation into human skin is presented, aimed at developing useful models for photomedicine. The component chromophores of epidermis and stratum corneum in general determine the attenuation of radiation in these layers, moreso than does optical scattering. Epidermal thickness and melanization are important factors for UV wavelengths less than 300 nm, whereas the attenuation of UVA (320-400 nm) and visible radiation is primarily via melanin. The selective penetration of all optical wavelengths into psoriatic skin can be maximized by application of clear lipophilic liquids, which decrease regular reflectance by a refractive-index matching mechanism. Sensitivity to wavelengths less than 320 nm can be enhanced by prolonged aqueous bathing, which extracts urocanic acid and other diffusible epidermal chromophores. Optical properties of the dermis are modelled using the Kubelka-Munk approach, and calculations of scattering and absorption coefficients are presented. This simple approach allows estimates of the penetration of radiation in vivo using noninvasive measurements of cutaneous spectral remittance (diffuse reflectance). Although the blood chromophores Hb, HbO2, and bilirubin determine dermal absorption of wavelengths longer than 320 nm, scattering by collagen fibers largely determines the depths to which these wavelengths penetrate the dermis, and profoundly modifies skin colors. An optical "window" exists between 600 and 1300 nm, which offers the possibility of treating large tissue volumes with certain long-wavelength photosensitizers. Moreover, whenever photosensitized action spectra extend across the near UV and/or visible spectrum, judicious choice of wavelengths allows some selection of the tissue layers directly affected.
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions.

              We have simulated diffuse reflectance spectra of skin by assuming a wavelength-independent scattering coefficient for the different skin tissues and using the known wavelength dependence of the absorption coefficient of oxy- and deoxyhaemoglobin and water. A stochastic Monte Carlo method is used to convert the wavelength-dependent absorption coefficient and wavelength-independent scattering coefficient into reflected intensity. The absorption properties of skin tissues in the visible and near-infrared spectral regions are estimated by taking into account the spatial distribution of blood vessels, water and melanin content within distinct anatomical layers. The geometrical peculiarities of skin histological structure, degree of blood oxygenation and the haematocrit index are also taken into account. We demonstrate that when the model is supplied with reasonable physical and structural parameters of skin, the results of the simulation agree reasonably well with the results of in vivo measurements of skin spectra.

                Author and article information

                Journal
                Int J Biomed Imaging
                Int J Biomed Imaging
                IJBI
                International Journal of Biomedical Imaging
                Hindawi Publishing Corporation
                1687-4188
                1687-4196
                2013
                18 September 2013
                : 2013
                : 978289
                Affiliations
                1National Electronic and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Klong Luang, Pathumthani 12120, Thailand
                2Laboratoire LE2I, UMR CNRS 6306, UFR Sciencees & Techniques, Université de Bourgogne, BP 47870, 21078 Dijon CEDEX, France
                Author notes

                Academic Editor: Vincent Paquit

                Author information
                http://orcid.org/0000-0002-9639-4598
                http://orcid.org/0000-0002-6034-7431
                http://orcid.org/0000-0003-0963-1565
                Article
                10.1155/2013/978289
                3789448
                24159326
                4618f9be-0388-40a5-9483-92bc51fe5d0d
                Copyright © 2013 Romuald Jolivot et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 May 2013
                : 15 July 2013
                : 29 July 2013
                Categories
                Research Article

                Radiology & Imaging
                Radiology & Imaging

                Comments

                Comment on this article

                Related Documents Log