92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

      review-article
      , *
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Bacillus lipopeptides: versatile weapons for plant disease biocontrol.

          In the context of biocontrol of plant diseases, the three families of Bacillus lipopeptides - surfactins, iturins and fengycins were at first mostly studied for their antagonistic activity for a wide range of potential phytopathogens, including bacteria, fungi and oomycetes. Recent investigations have shed light on the fact that these lipopeptides can also influence the ecological fitness of the producing strain in terms of root colonization (and thereby persistence in the rhizosphere) and also have a key role in the beneficial interaction of Bacillus species with plants by stimulating host defence mechanisms. The different structural traits and physico-chemical properties of these effective surface- and membrane-active amphiphilic biomolecules explain their involvement in most of the mechanisms developed by bacteria for the biocontrol of different plant pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The new higher level classification of eukaryotes with emphasis on the taxonomy of protists.

            This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic studies. We propose a scheme that is based on nameless ranked systematics. The vocabulary of the taxonomy is updated, particularly to clarify the naming of groups that have been repositioned. We recognize six clusters of eukaryotes that may represent the basic groupings similar to traditional "kingdoms." The multicellular lineages emerged from within monophyletic protist lineages: animals and fungi from Opisthokonta, plants from Archaeplastida, and brown algae from Stramenopiles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacillus subtilis antibiotics: structures, syntheses and specific functions.

              The endospore-forming rhizobacterium Bacillus subtilis- the model system for Gram-positive organisms, is able to produce more than two dozen antibiotics with an amazing variety of structures. The produced anti-microbial active compounds include predominantly peptides that are either ribosomally synthesized and post-translationally modified (lantibiotics and lantibiotic-like peptides) or non-ribosomally generated, as well as a couple of non-peptidic compounds such as polyketides, an aminosugar, and a phospholipid. Here I summarize the structures of all known B. subtilis antibiotics, their biochemistry and genetic analysis of their biosyntheses. An updated summary of well-studied antibiotic regulation pathways is given. Furthermore, current findings are resumed that show roles for distinct B. subtilis antibiotics beyond the "pure" anti-microbial action: Non-ribosomally produced lipopeptides are involved in biofilm and swarming development, lantibiotics function as pheromones in quorum-sensing, and a "killing factor" effectuates programmed cell death in sister cells. A discussion of how these antibiotics may contribute to the survival of B. subtilis in its natural environment is given.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                6 January 2015
                : 2015
                : 473050
                Affiliations
                Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla 171 005, India
                Author notes
                *Shamsher S. Kanwar: kanwarss2000@ 123456yahoo.com

                Academic Editor: Denise Freire

                Article
                10.1155/2015/473050
                4303012
                25632392
                4622cb28-81e0-40b0-b673-40c423f8b7a6
                Copyright © 2015 K. R. Meena and S. S. Kanwar.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2014
                : 26 September 2014
                : 2 October 2014
                Categories
                Review Article

                Comments

                Comment on this article