11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong interaction regime, where the short time dynamics are governed by the exponential growth rate of unstable collective modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy dependence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing instabilities towards Stoner ferromagnetism and pairing.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Many-Body Physics with Ultracold Gases

          This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Fermi-liquid instabilities at magnetic quantum phase transitions

            This review discusses instabilities of the Fermi-liquid state of conduction electrons in metals with particular emphasis on magnetic quantum critical points. Both the existing theoretical concepts and experimental data on selected materials are presented; with the aim of assessing the validity of presently available theory. After briefly recalling the fundamentals of Fermi-liquid theory, the local Fermi-liquid state in quantum impurity models and their lattice versions is described. Next, the scaling concepts applicable to quantum phase transitions are presented. The Hertz-Millis-Moriya theory of quantum phase transitions is described in detail. The breakdown of the latter is analyzed in several examples. In the final part experimental data on heavy-fermion materials and transition-metal alloys are reviewed and confronted with existing theory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Observation of metastable states in spinor Bose-Einstein condensates

              Bose-Einstein condensates have been prepared in long-lived metastable excited states. Two complementary types of metastable states were observed. The first is due to the immiscibility of multiple components in the condensate, and the second to local suppression of spin-relaxation collisions. Relaxation via re-condensation of non-condensed atoms, spin relaxation, and quantum tunneling was observed. These experiments were done with F=1 spinor Bose-Einstein condensates of sodium confined in an optical dipole trap.
                Bookmark

                Author and article information

                Journal
                13 May 2010
                Article
                10.1103/PhysRevLett.106.050402
                1005.2366
                462560a7-b63b-4f47-9cda-ea00bd8da2df

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. Lett. 106, 050402 (2011)
                4+epsilon pages, 4 figures
                cond-mat.quant-gas

                Comments

                Comment on this article