47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Yeast Model Uncovers Dual Roles of Mitochondria in the Action of Artemisinin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artemisinins, derived from the wormwood herb Artemisia annua, are the most potent antimalarial drugs currently available. Despite extensive research, the exact mode of action of artemisinins has not been established. Here we use yeast, Saccharamyces cerevisiae, to probe the core working mechanism of this class of antimalarial agents. We demonstrate that artemisinin's inhibitory effect is mediated by disrupting the normal function of mitochondria through depolarizing their membrane potential. Moreover, in a genetic study, we identify the electron transport chain as an important player in artemisinin's action: Deletion of NDE1 or NDI1, which encode mitochondrial NADH dehydrogenases, confers resistance to artemisinin, whereas overexpression of NDE1 or NDI1 dramatically increases sensitivity to artemisinin. Mutations or environmental conditions that affect electron transport also alter host's sensitivity to artemisinin. Sensitivity is partially restored when the Plasmodium falciparum NDI1 ortholog is expressed in yeast ndi1 strain. Finally, we showed that artemisinin's inhibitory effect is mediated by reactive oxygen species. Our results demonstrate that artemisinin's effect is primarily mediated through disruption of membrane potential by its interaction with the electron transport chain, resulting in dysfunctional mitochondria. We propose a dual role of mitochondria played during the action of artemisinin: the electron transport chain stimulates artemisinin's effect, most likely by activating it, and the mitochondria are subsequently damaged by the locally generated free radicals.

          Synopsis

          Malaria kills at least 1 million people worldwide a year. Recent years saw the rapid emergence of drug-resistant malaria strains. Artemisinins, derived from the Chinese wormwood herb Artemisia annua, are the most potent antimalarials currently available. Despite extensive research, the exact mode of action of artemisinins has not been established. In this article, Li et al. investigated yeast as a model to probe the core working mechanism of this class of antimalarials. They showed that artemisinin can disrupt the normal function of mitochondria by depolarizing its membrane potential, and that artemisinin's effect can be affected by its interaction with the mitochondrial electron transport chain, an apparatus that couples oxygen oxidation and energy generation in the cell. They proposed a dual role of mitochondria played during the action of artemisinin: the electron transport chain likely activates artemisinin, and the mitochondria are subsequently damaged by the locally generated free radicals associated with this activation. The research has provided a fine tool for the study of the mechanism of artemisinin in a model organism (yeast), and laid the framework for a set of possible future experiments to be conducted in yeast and malaria parasites.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the metabolic and genetic control of gene expression on a genomic scale.

          DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration. The expression profiles observed for genes with known metabolic functions pointed to features of the metabolic reprogramming that occur during the diauxic shift, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions. The same DNA microarrays were also used to identify genes whose expression was affected by deletion of the transcriptional co-repressor TUP1 or overexpression of the transcriptional activator YAP1. These results demonstrate the feasibility and utility of this approach to genomewide exploration of gene expression patterns.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum.

            Throughout the latter half of this century, the development and spread of resistance to most front-line antimalarial compounds used in the prevention and treatment of the most severe form of human malaria has given cause for grave clinical concern. Polymorphisms in pfmdr1, the gene encoding the P-glycoprotein homologue 1 (Pgh1) protein of Plasmodium falciparum, have been linked to chloroquine resistance; Pgh1 has also been implicated in resistance to mefloquine and halofantrine. However, conclusive evidence of a direct causal association between pfmdr1 and resistance to these antimalarials has remained elusive, and a single genetic cross has suggested that Pgh1 is not involved in resistance to chloroquine and mefloquine. Here we provide direct proof that mutations in Pgh1 can confer resistance to mefloquine, quinine and halofantrine. The same mutations influence parasite resistance towards chloroquine in a strain-specific manner and the level of sensitivity to the structurally unrelated compound, artemisinin. This has important implications for the development and efficacy of future antimalarial agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artemisinins target the SERCA of Plasmodium falciparum.

              Artemisinins are extracted from sweet wormwood (Artemisia annua) and are the most potent antimalarials available, rapidly killing all asexual stages of Plasmodium falciparum. Artemisinins are sesquiterpene lactones widely used to treat multidrug-resistant malaria, a disease that annually claims 1 million lives. Despite extensive clinical and laboratory experience their molecular target is not yet identified. Activated artemisinins form adducts with a variety of biological macromolecules, including haem, translationally controlled tumour protein (TCTP) and other higher-molecular-weight proteins. Here we show that artemisinins, but not quinine or chloroquine, inhibit the SERCA orthologue (PfATP6) of Plasmodium falciparum in Xenopus oocytes with similar potency to thapsigargin (another sesquiterpene lactone and highly specific SERCA inhibitor). As predicted, thapsigargin also antagonizes the parasiticidal activity of artemisinin. Desoxyartemisinin lacks an endoperoxide bridge and is ineffective both as an inhibitor of PfATP6 and as an antimalarial. Chelation of iron by desferrioxamine abrogates the antiparasitic activity of artemisinins and correspondingly attenuates inhibition of PfATP6. Imaging of parasites with BODIPY-thapsigargin labels the cytosolic compartment and is competed by artemisinin. Fluorescent artemisinin labels parasites similarly and irreversibly in an Fe2+-dependent manner. These data provide compelling evidence that artemisinins act by inhibiting PfATP6 outside the food vacuole after activation by iron.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                pgen
                PLoS Genetics
                1553-7390
                1553-7404
                September 2005
                16 September 2005
                : 1
                : 3
                : e36
                Affiliations
                [1 ] The State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing, China
                [2 ] Departments of Medicine and Pediatrics and Howard Hughes Medical Institute, University of California, San Francisco, California, United States of America
                Washington University, United States of America
                Author notes
                *To whom correspondence should be addressed: zhoubing@ 123456tsinghua.edu.cn
                Article
                05-PLGE-RA-0097R2 plge-01-03-07
                10.1371/journal.pgen.0010036
                1201371
                16170412
                4625c4ab-54e3-4504-af53-4a58a9448af2
                Copyright: © 2005 Li, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 9 May 2005
                : 8 August 2005
                Categories
                Research Article
                Infectious Diseases
                Pharmacology - Drug Discovery
                Genetics/Gene Discovery
                Genetics/Disease Models
                Yeast and Fungi
                Saccharomyces
                Custom metadata
                Li W, Mo W, Shen D, Sun L, Wang J, et al (2005) Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 1(3): e36.

                Genetics
                Genetics

                Comments

                Comment on this article