10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo.

      Journal of Neurochemistry
      Animals, Cell Survival, physiology, Dopamine, Enzyme Induction, MPTP Poisoning, physiopathology, prevention & control, Male, Mice, Mice, Inbred C57BL, Microglia, enzymology, Neuroglia, drug effects, Neurons, Nitric Oxide Synthase, antagonists & inhibitors, deficiency, metabolism, Nitric Oxide Synthase Type II, Substantia Nigra, pathology, Tyrosine 3-Monooxygenase

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MPTP produces clinical, biochemical, and neuropathologic changes reminiscent of those that occur in idiopathic Parkinson's disease (PD). In the present study we show that MPTP treatment led to activation of microglia in the substantia nigra pars compacta (SNpc), which was associated and colocalized with an increase in inducible nitric oxide synthase (iNOS) expression. In iNOS-deficient mice the increase of iNOS expression but not the activation of microglia was blocked. Dopaminergic SNpc neurons of iNOS-deficient mice were almost completely protected from MPTP toxicity in a chronic paradigm of MPTP toxicity. Because the MPTP-induced decrease in striatal concentrations of dopamine and its metabolites did not differ between iNOS-deficient mice and their wild-type littermates, this protection was not associated with a preservation of nigrostriatal terminals. Our results suggest that iNOS-derived nitric oxide produced in microglia plays an important role in the death of dopaminergic neurons but that other mechanisms contribute to the loss of dopaminergic terminals in MPTP neurotoxicity. We conclude that inhibition of iNOS may be a promising target for the treatment of PD.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease.

          MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) damages dopaminergic neurons as seen in Parkinson disease. Here we show that after administration of MPTP to mice, there was a robust gliosis in the substantia nigra pars compacta associated with significant upregulation of inducible nitric oxide synthase (iNOS). These changes preceded or paralleled MPTP-induced dopaminergic neurodegeneration. We also show that mutant mice lacking the iNOS gene were significantly more resistant to MPTP than their wild-type littermates. This study demonstrates that iNOS is important in the MPTP neurotoxic process and indicates that inhibitors of iNOS may provide protective benefit in the treatment of Parkinson disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia as mediators of inflammatory and degenerative diseases.

            Microglia are the principal immune cells in the central nervous system (CNS) and have a critical role in host defense against invading microorganisms and neoplastic cells. However, as with immune cells in other organs, microglia may play a dual role, amplifying the effects of inflammation and mediating cellular degeneration as well as protecting the CNS. In entities like human immunodeficiency virus (HIV) infection of the nervous system, microglia are also critical to viral persistence. In this review we discuss the role of microglia in three diseases in which their activity is at least partially deleterious: HIV, multiple sclerosis, and Alzheimer's disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aging, energy, and oxidative stress in neurodegenerative diseases.

              M F Beal (1995)
              The etiology of neurodegenerative diseases remains enigmatic; however, evidence for defects in energy metabolism, excitotoxicity, and for oxidative damage is increasingly compelling. It is likely that there is a complex interplay between these mechanisms. A defect in energy metabolism may lead to neuronal depolarization, activation of N-methyl-D-aspartate excitatory amino acid receptors, and increases in intracellular calcium, which are buffered by mitochondria. Mitochondria are the major intracellular source of free radicals, and increased mitochondrial calcium concentrations enhance free radical generation. Mitochondrial DNA is particularly susceptible to oxidative stress, and there is evidence of age-dependent damage and deterioration of respiratory enzyme activities with normal aging. This may contribute to the delayed onset and age dependence of neurodegenerative diseases. There is evidence for increased oxidative damage to macromolecules in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, and Alzheimer's disease. Potential therapeutic approaches include glutamate release inhibitors, excitatory amino acid antagonists, strategies to improve mitochondrial function, free radical scavengers, and trophic factors. All of these approaches appear promising in experimental studies and are now being applied to human studies.
                Bookmark

                Author and article information

                Comments

                Comment on this article