140
views
0
recommends
+1 Recommend
0 collections
    14
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term cortical spreading depolarization (CSD) describes a wave of mass neuronal depolarization associated with net influx of cations and water. Clusters of prolonged CSDs were measured time-locked to progressive ischaemic damage in human cortex. CSD induces tone alterations in resistance vessels, causing either transient hyperperfusion (physiological haemodynamic response) in healthy tissue; or hypoperfusion [inverse haemodynamic response = cortical spreading ischaemia (CSI)] in tissue at risk for progressive damage, which has so far only been shown experimentally. Here, we performed a prospective, multicentre study in 13 patients with aneurysmal subarachnoid haemorrhage, using novel subdural opto-electrode technology for simultaneous laser-Doppler flowmetry (LDF) and direct current-electrocorticography, combined with measurements of tissue partial pressure of oxygen (ptiO 2). Regional cerebral blood flow and electrocorticography were simultaneously recorded in 417 CSDs. Isolated CSDs occurred in 12 patients and were associated with either physiological, absent or inverse haemodynamic responses. Whereas the physiological haemodynamic response caused tissue hyperoxia, the inverse response led to tissue hypoxia. Clusters of prolonged CSDs were measured in five patients in close proximity to structural brain damage as assessed by neuroimaging. Clusters were associated with CSD-induced spreading hypoperfusions, which were significantly longer in duration (up to 144 min) than those of isolated CSDs. Thus, oxygen depletion caused by the inverse haemodynamic response may contribute to the establishment of clusters of prolonged CSDs and lesion progression. Combined electrocorticography and perfusion monitoring also revealed a characteristic vascular signature that might be used for non-invasive detection of CSD. Low-frequency vascular fluctuations (LF-VF) ( f < 0.1 Hz), detectable by functional imaging methods, are determined by the brain's resting neuronal activity. CSD provides a depolarization block of the resting activity, recorded electrophysiologically as spreading depression of high-frequency-electrocorticography activity. Accordingly, we observed a spreading suppression of LF-VF, which accompanied spreading depression of high-frequency-electrocorticography activity, independently of whether CSD was associated with a physiological, absent or inverse haemodynamic response. Spreading suppressions of LF-VF thus allow the differentiation of progressive ischaemia and repair phases in a fashion similar to that shown previously for spreading depressions of high-frequency-electrocorticography activity. In conclusion, it is suggested that (i) CSI is a novel human disease mechanism associated with lesion development and a potential target for therapeutic intervention in stroke; and that (ii) prolonged spreading suppressions of LF-VF are a novel ‘functional marker’ for progressive ischaemia.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data.

          In subjects performing no specific cognitive task ("resting state"), time courses of voxels within functionally connected regions of the brain have high cross-correlation coefficients ("functional connectivity"). The purpose of this study was to measure the contributions of low frequencies and physiological noise to cross-correlation maps. In four healthy volunteers, task-activation functional MR imaging and resting-state data were acquired. We obtained four contiguous slice locations in the "resting state" with a high sampling rate. Regions of interest consisting of four contiguous voxels were selected. The correlation coefficient for the averaged time course and every other voxel in the four slices was calculated and separated into its component frequency contributions. We calculated the relative amounts of the spectrum that were in the low-frequency (0 to 0.1 Hz), the respiratory-frequency (0.1 to 0.5 Hz), and cardiac-frequency range (0.6 to 1.2 Hz). For each volunteer, resting-state maps that resembled task-activation maps were obtained. For the auditory and visual cortices, the correlation coefficient depended almost exclusively on low frequencies (<0.1 Hz). For all cortical regions studied, low-frequency fluctuations contributed more than 90% of the correlation coefficient. Physiological (respiratory and cardiac) noise sources contributed less than 10% to any functional connectivity MR imaging map. In blood vessels and cerebrospinal fluid, physiological noise contributed more to the correlation coefficient. Functional connectivity in the auditory, visual, and sensorimotor cortices is characterized predominantly by frequencies slower than those in the cardiac and respiratory cycles. In functionally connected regions, these low frequencies are characterized by a high degree of temporal coherence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging.

            We examined fluctuations in band-limited power (BLP) of local field potential (LFP) signals recorded from multiple electrodes in visual cortex of the monkey during different behavioral states. We asked whether such signals demonstrated coherent fluctuations over time-scales of seconds and minutes, and would thus serve as good candidates for direct comparison with data obtained from functional magnetic resonance imaging (fMRI). We obtained the following results. (i) The BLP of the local field displayed fluctuations at many time-scales, with particularly large amplitude at very low frequencies (<0.1 Hz). (ii) These fluctuations exhibited high coherence between electrode pairs, particularly for BLP signals derived from the gamma frequency range. (iii) Coherence in the BLP, unlike that in the raw LFP, did not fall off sharply as a function of cortical distance. (iv) The structure and coherence of BLP changes were highly similar under distinctly different behavioral states. These results demonstrate the existence of widespread coherent activity fluctuations in the brain of the awake monkey over very long time-scales. We propose that such signals may make a significant contribution to the high variability observed in the time course of physiological signals, including those measured with functional imaging techniques. The results are discussed in the context of combined fMRI/electrophysiological recordings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations.

              Progressive ischaemic damage in animals is associated with spreading mass depolarizations of neurons and astrocytes, detected as spreading negative slow voltage variations. Speculation on whether spreading depolarizations occur in human ischaemic stroke has continued for the past 60 years. Therefore, we performed a prospective multicentre study assessing incidence and timing of spreading depolarizations and delayed ischaemic neurological deficit (DIND) in patients with major subarachnoid haemorrhage (SAH) requiring aneurysm surgery. Spreading depolarizations were recorded by electrocorticography with a subdural electrode strip placed on cerebral cortex for up to 10 days. A total of 2110 h recording time was analysed. The clinical state was monitored every 6 h. Delayed infarcts after SAH were verified by serial CT scans and/or MRI. Electrocorticography revealed 298 spreading depolarizations in 13 of the 18 patients (72%). A clinical DIND was observed in seven patients 7.8 days (7.3, 8.2) after SAH. DIND was time-locked to a sequence of recurrent spreading depolarizations in every single case (positive and negative predictive values: 86 and 100%, respectively). In four patients delayed infarcts developed in the recording area. As in the ischaemic penumbra of animals, delayed infarction was preceded by progressive prolongation of the electrocorticographic depression periods associated with spreading depolarizations to >60 min in each case. This study demonstrates that spreading depolarizations have a high incidence in major SAH and occur in ischaemic stroke. Repeated spreading depolarizations with prolonged depression periods are an early indicator of delayed ischaemic brain damage after SAH. In view of experimental evidence and the present clinical results, we suggest that spreading depolarizations with prolonged depressions are a promising target for treatment development in SAH and ischaemic stroke.
                Bookmark

                Author and article information

                Journal
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                July 2009
                6 May 2009
                6 May 2009
                : 132
                : 7
                : 1866-1881
                Affiliations
                1 Department of Experimental Neurology, Charité University Medicine Berlin, Berlin, Germany
                2 Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
                3 Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
                4 Department of Clinical Neuroscience, King's College London, London, UK
                5 Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
                6 Department of Clinical Neurophysiology, Glostrup Hospital, University of Copenhagen, Copenhagen, Denmark
                7 Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
                8 Department of Neuroradiology, Charité University Medicine Berlin, Berlin, Germany
                Author notes
                Correspondence to: Jens P. Dreier, Center for Stroke Research Berlin, Charité Campus Mitte, Charité University Medicine Berlin, Charitépl. 1, 10117 Berlin, Germany E-mail: jens.dreier@ 123456charite.de
                Article
                awp102
                10.1093/brain/awp102
                2702835
                19420089
                462f9f74-14ab-4c74-89b5-409c553b44d3
                © 2009 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2008
                : 10 March 2009
                : 27 March 2009
                Categories
                Original Articles

                Neurosciences
                default mode,csi,cortical spreading depression,subarachnoid haemorrhage,neurovascular coupling

                Comments

                Comment on this article