6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Design and Performance of a Hybrid Fast and Thermal Neutron Detector

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the performance and characterization of a custom-built hybrid detector consisting of BC501A liquid scintillator for fast neutrons and BC702 scintillator for thermal neutrons. The calibration and the resolution of the BC501A liquid scintillator detector are performed. The event identification via Pulse Shape Discrimination (PSD) technique is developed in order to distinguish gamma, fast and thermal neutrons. Monte Carlo simulation packages are developed in GEANT4 to obtain actual neutron energy spectrum from the measured recoil spectrum. The developed methods are tested by reconstruction of 241AmBe(\alpha, n) neutron spectrum.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Indirect and direct search for dark matter

          The majority of the matter in the universe is still unidentified and under investigation by both direct and indirect means. Many experiments searching for the recoil of dark-matter particles off target nuclei in underground laboratories have established increasingly strong constraints on the mass and scattering cross sections of weakly interacting particles, and some have even seen hints at a possible signal. Other experiments search for a possible mixing of photons with light scalar or pseudo-scalar particles that could also constitute dark matter. Furthermore, annihilation or decay of dark matter can contribute to charged cosmic rays, photons at all energies, and neutrinos. Many existing and future ground-based and satellite experiments are sensitive to such signals. Finally, data from the Large Hadron Collider at CERN are scrutinized for missing energy as a signature of new weakly interacting particles that may be related to dark matter. In this review article we summarize the status of the field with an emphasis on the complementarity between direct detection in dedicated laboratory experiments, indirect detection in the cosmic radiation, and searches at particle accelerators.
            Bookmark

            Author and article information

            Journal
            2016-12-02
            Article
            1612.00842
            463415b0-fd27-4300-87bc-7e669a59ef2a

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            History
            Custom metadata
            12 pages, 32 figures
            physics.ins-det

            Technical & Applied physics
            Technical & Applied physics

            Comments

            Comment on this article