15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptomic Profiling and Physiological Responses of Halophyte Kochia sieversiana Provide Insights into Salt Tolerance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Halophytes are remarkable plants that can tolerate extremely high-salinity conditions, and have different salinity tolerance mechanisms from those of glycophytic plants. In this work, we investigated the mechanisms of salinity tolerance of an extreme halophyte, Kochia sieversiana (Pall.) C. A. M, using RNA sequencing and physiological tests. The results showed that moderate salinity stimulated the growth and water uptake of K. sieversiana and, even under 480-mM salinity condition, K. sieversiana maintained an extremely high water content. This high water content may be a specific adaptive strategy of K. sieversiana to high salinity. The physiological analysis indicated that increasing succulence and great accumulations of sodium, alanine, sucrose, and maltose may be favorable to the water uptake and osmotic regulation of K. sieversiana under high-salinity stress. Transcriptome data indicated that some aquaporin genes and potassium (K +) transporter genes may be important for water uptake and ion balance, respectively, while different members of those gene families were employed under low- and high-salinity stresses. In addition, several aquaporin genes were up-regulated in low- but not high-salinity stressed roots. The highly expressed aquaporin genes may allow low-salinity stressed K. sieversiana plants to uptake more water than control plants. The leaf K +/root K + ratio was enhanced under low- but not high-salinity stress, which suggested that low salinity might promote K + transport from the roots to the shoots. Hence, we speculated that low salinity might allow K. sieversiana to uptake more water and transport more K + from roots to shoots, increasing the growth rate of K. sieversiana.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Salt tolerance and salinity effects on plants: a review.

          Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Salinity tolerance in halophytes.

            Halophytes, plants that survive to reproduce in environments where the salt concentration is around 200 mm NaCl or more, constitute about 1% of the world's flora. Some halophytes show optimal growth in saline conditions; others grow optimally in the absence of salt. However, the tolerance of all halophytes to salinity relies on controlled uptake and compartmentalization of Na+, K+ and Cl- and the synthesis of organic 'compatible' solutes, even where salt glands are operative. Although there is evidence that different species may utilize different transporters in their accumulation of Na+, in general little is known of the proteins and regulatory networks involved. Consequently, it is not yet possible to assign molecular mechanisms to apparent differences in rates of Na+ and Cl- uptake, in root-to-shoot transport (xylem loading and retrieval), or in net selectivity for K+ over Na+. At the cellular level, H+-ATPases in the plasma membrane and tonoplast, as well as the tonoplast H+-PPiase, provide the trans-membrane proton motive force used by various secondary transporters. The widespread occurrence, taxonomically, of halophytes and the general paucity of information on the molecular regulation of tolerance mechanisms persuade us that research should be concentrated on a number of 'model' species that are representative of the various mechanisms that might be involved in tolerance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ion homeostasis under salt stress.

              When under salt stress, plants maintain a high concentration of K(+) and a low concentration of Na(+) in the cytosol. They do this by regulating the expression and activity of K(+) and Na(+) transporters and of H(+) pumps that generate the driving force for transport. Although salt-stress sensors remain elusive, some of the intermediary signaling components have been identified. Evidence suggests that a protein kinase complex consisting of the myristoylated calcium-binding protein SOS3 and the serine/threonine protein kinase SOS2 is activated by a salt-stress-elicited calcium signal. The protein kinase complex then phosphorylates and activates various ion transporters, such as the plasma membrane Na(+)/H(+) antiporter SOS1.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                24 November 2017
                2017
                : 8
                : 1985
                Affiliations
                [1] 1Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University , Changchun, China
                [2] 2Department of Agronomy, Jilin Agricultural University , Changchun, China
                Author notes

                Edited by: Sergey Shabala, University of Tasmania, Australia

                Reviewed by: Hans-Werner Koyro, Justus-Liebig-Universität Gießen, Germany; Narendra Singh Yadav, Ben-Gurion University of the Negev, Israel

                *Correspondence: Chunwu Yang 45447087@ 123456qq.com

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01985
                5705942
                463882b4-2c0e-4693-b720-d5f9bd5a1347
                Copyright © 2017 Zhao, Yang, Guo, Mao, Li, Sun, Wang and Yang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 August 2017
                : 03 November 2017
                Page count
                Figures: 7, Tables: 6, Equations: 0, References: 51, Pages: 13, Words: 9213
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31670218
                Award ID: 31300192
                Award ID: 11471069
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                halophyte,rnaseq,na+,water balance,root
                Plant science & Botany
                halophyte, rnaseq, na+, water balance, root

                Comments

                Comment on this article