4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytodesalination of a moderately saline soil combined with two inorganic amendments

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT The shortage of water and the increasing salinity are the main limiting environmental factors that directly affect the establishment and the development of crops. In this research, phytodesalination capacity of Sesuvium verrucosum was evaluated alone and in combination with agricultural gypsum (CaSO4·2H2O) and Polisul-C, in order to remedy a moderately saline soil at greenhouse level and under nonleaching conditions. The treatments studied were the following: T1 (soil), T2 (soil + S. verrucosum), T3 (soil +S. verrucosum + Polisul-C), T4 (soil + S. verrucosum + CaSO4·2H2O). Polyvinyl chloride (PVC) tubes filled with 8 kg of clay soil with an electrical conductivity of the saturation paste extract (ECe) of6.21 dS.m-1 were used. Soil samples were analyzed to determine the ECe, and the soluble and interchangeable cations (Na+, K+, Ca2+ and Mg2+) content. Then, the halophytic plants were divided into root and aerial parts and the content of Na+, K+, Ca2+ and Mg2+ was determined. In summary, S. verrucosum showed potential to desalinate its rhizosphere. Moreover, S. verrucosum desalination capacity significantly increases when used in combination with either of the tested amendments. This increase occurred mainly in the upper layers of the clay soil (0-30 cm). CaSO4·2H2O was shown to be the most effective amendment, since a greater gain in biomass and a large accumulation of sodium (Na+) in the aerial part of S. verrucosum was observed as a consequence of the soil improved physico-chemical properties caused by this chemical.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture.

           M. Qadir,  J. D. Oster (2004)
          Irrigation has long played a key role in feeding the expanding world population and is expected to play a still greater role in the future. As supplies of good-quality irrigation water are expected to decrease in several regions due to increased municipal-industrial-agricultural competition, available freshwater supplies need to be used more efficiently. In addition, reliance on the use and reuse of saline and/or sodic drainage waters, generated by irrigated agriculture, seems inevitable for irrigation. The same applies to salt-affected soils, which occupy more than 20% of the irrigated lands, and warrant attention for efficient, inexpensive and environmentally acceptable management. Technologically and from a management perspective, a couple of strategies have shown the potential to improve crop production under irrigated agriculture while minimizing the adverse environmental impacts. The first strategy, vegetative bioremediation--a plant-assisted reclamation approach--relies on growing appropriate plant species that can tolerate ambient soil salinity and sodicity levels during reclamation of salt-affected soils. A variety of plant species of agricultural significance have been found to be effective in sustainable reclamation of calcareous and moderately sodic and saline-sodic soils. The second strategy fosters dedicating soils to crop production systems where saline and/or sodic waters predominate and their disposal options are limited. Production systems based on salt-tolerant plant species using drainage waters may be sustainable with the potential of transforming such waters from an environmental burden into an economic asset. Such a strategy would encourage the disposal of drainage waters within the irrigated regions where they are generated rather than exporting these waters to other regions via discharge into main irrigation canals, local streams, or rivers. Being economically and environmentally sustainable, these strategies could be the key to future agricultural and economic growth and social wealth in regions where salt-affected soils exist and/or where saline-sodic drainage waters are generated.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Recent developments in understanding salinity tolerance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Potential Use of Halophytes to Remediate Saline Soils

              Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                brag
                Bragantia
                Bragantia
                Instituto Agronômico de Campinas (Campinas, SP, Brazil )
                0006-8705
                1678-4499
                December 2019
                : 78
                : 4
                : 579-586
                Affiliations
                Jiquilpan orgnameInstituto Politécnico Nacional orgdiv1CIIDIR Unidad Michoacán Mexico
                Yautepec orgnameInstituto Politécnico Nacional orgdiv1CEPROBI Mexico
                Article
                S0006-87052019000400579 S0006-8705(19)07800400579
                10.1590/1678-4499.20190031

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 41, Pages: 8
                Product
                Product Information: website
                Categories
                Soils and Plant Nutrition

                Comments

                Comment on this article