8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Topical microbicides are potentially an alternative method to vaccines for reducing the spread of herpes simplex virus (HSV). We have previously shown (S. Liu et al., Biochim. Biophys. Acta 1723:270-281, 2005) that the catechin (-)-epigallocatechin gallate (EGCG) inactivates HSV at neutral pH; however, to function in the female genital tract EGCG must also be effective at acidic pH. EGCG inactivated HSV-1 and HSV-2 at pH 8.0 by 3 log(10) to 4 log(10) but was ineffective at pH 5.7. The EGCG digallate dimers theasinensin A, P2, and theaflavin-3,3'-digallate (TF-3) inactivated both viruses by 3 log(10) to 4 log(10) at pH 5.7 and as much as 5 log(10) at pH 8.0. TF-3 inactivated HSV-1 and HSV-2 by 4 to 5 log(10) in the pH range of 4.0 to 5.7. Dimers with one gallate moiety had antiviral activity intermediate between the activities of EGCG and digallate dimers. Confocal and electron microscopy showed that theasinensin A did not damage Vero cells. All EGCG dimers inactivated enveloped viruses with class I, class II, and class III (HSV-1, HSV-2) fusion proteins more effectively than did monomeric EGCG. EGCG had no activity against the nonenveloped viruses tested, but TF-3 reduced the titer of 4 of 5 nonenveloped viruses by ≅2 to 3.5 log(10). Results also showed that HSV-1 glycoprotein B (gB) was aggregated more rapidly by theasinensin A than EGCG, which, when taken together with the nonenveloped virus data, suggests that dimers may inhibit the function of viral proteins required for infectivity. Digallate dimers of EGCG appear to have excellent potential as microbicidal agents against HSV at acidic and neutral pHs.

          Related collections

          Author and article information

          Journal
          Antimicrob Agents Chemother
          Antimicrobial agents and chemotherapy
          American Society for Microbiology
          1098-6596
          0066-4804
          Dec 2011
          : 55
          : 12
          Affiliations
          [1 ] Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA. chisi@rcn.com
          Article
          AAC.05531-11
          10.1128/AAC.05531-11
          3232753
          21947401
          46430f82-40cd-4219-9ba7-54c0eda441ef
          History

          Comments

          Comment on this article