62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge of the molecular networks controlling the proliferation and fate of hematopoietic stem cells (HSC) is essential to understand their function in maintaining blood cell production during normal hematopoiesis and upon clinical transplantation. Using highly purified stem and progenitor cell populations, we define the proliferation index and status of the cell cycle machinery at discrete stages of hematopoietic differentiation and during cytokine-mediated HSC mobilization. We identify distinct sets of cell cycle proteins that specifically associate with differentiation, self-renewal, and maintenance of quiescence in HSC and progenitor cells. Moreover, we describe a striking inequality of function among in vivo cycling and quiescent HSC by demonstrating that their long-term engraftment potential resides predominantly in the G 0 fraction. These data provide a direct link between HSC proliferation and function and identify discrete molecular targets in regulating HSC cell fate decisions that could have implications for both the therapeutic use of HSC and the understanding of leukemic transformation.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells.

          A central issue in stem cell biology is to understand the mechanisms that regulate the self-renewal of haematopoietic stem cells (HSCs), which are required for haematopoiesis to persist for the lifetime of the animal. We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1. The number of HSCs in the fetal liver of Bmi-1-/- mice was normal. In postnatal Bmi-1-/- mice, the number of HSCs was markedly reduced. Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis. There was no detectable self-renewal of adult HSCs, indicating a cell autonomous defect in Bmi-1-/- mice. A gene expression analysis revealed that the expression of stem cell associated genes, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice. Expression of p16Ink4a and p19Arf in normal HSCs resulted in proliferative arrest and p53-dependent cell death, respectively. Our results indicate that Bmi-1 is essential for the generation of self-renewing adult HSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hematopoietic stem cell quiescence maintained by p21cip1/waf1.

            Relative quiescence is a defining characteristic of hematopoietic stem cells, while their progeny have dramatic proliferative ability and inexorably move toward terminal differentiation. The quiescence of stem cells has been conjectured to be of critical biologic importance in protecting the stem cell compartment, which we directly assessed using mice engineered to be deficient in the G1 checkpoint regulator, cyclin-dependent kinase inhibitor, p21cip1/waf1 (p21). In the absence of p21, hematopoietic stem cell proliferation and absolute number were increased under normal homeostatic conditions. Exposing the animals to cell cycle-specific myelotoxic injury resulted in premature death due to hematopoietic cell depletion. Further, self-renewal of primitive cells was impaired in serially transplanted bone marrow from p21-/- mice, leading to hematopoietic failure. Therefore, p21 is the molecular switch governing the entry of stem cells into the cell cycle, and in its absence, increased cell cycling leads to stem cell exhaustion. Under conditions of stress, restricted cell cycling is crucial to prevent premature stem cell depletion and hematopoietic death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6.

              Cdk4 and Cdk6 are thought to be essential for initiation of the cell cycle in response to mitogenic stimuli. Previous studies have shown that Cdk4 is dispensable for proliferation in most cell types, an observation attributed to a putative compensatory role by Cdk6. Cdk6-null mice are viable and develop normally although hematopoiesis is slightly impaired. Embryos defective for Cdk4 and Cdk6 die during the late stages of embryonic development due to severe anemia. However, these embryos display normal organogenesis and most cell types proliferate normally. In vitro, embryonic fibroblasts lacking Cdk4 and Cdk6 proliferate and become immortal upon serial passage. Moreover, quiescent Cdk4/Cdk6-null cells respond to serum stimulation and enter S phase with normal kinetics although with lower efficiency. These results indicate that D-type cyclin-dependent kinases are not essential for cell cycle entry and suggest the existence of alternative mechanisms to initiate cell proliferation upon mitogenic stimulation.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                5 December 2005
                : 202
                : 11
                : 1599-1611
                Affiliations
                [1 ]Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
                [2 ]Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
                [3 ]Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305
                [4 ]Division of Oncology, Stanford University School of Medicine, Stanford, CA 94305
                Author notes

                CORRESPONDENCE Emmanuelle Passegué: passegue@ 123456stanford.edu

                Article
                20050967
                10.1084/jem.20050967
                2213324
                16330818
                464bffda-4542-481b-b5c6-922f611ad38e
                Copyright © 2005, The Rockefeller University Press
                History
                : 12 May 2005
                : 13 September 2005
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article