4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Attentional amplification of neural codes for number independent of other quantities along the dorsal visual stream

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humans and other animals base important decisions on estimates of number, and intraparietal cortex is thought to provide a crucial substrate of this ability. However, it remains debated whether an independent neuronal processing mechanism underlies this ‘number sense’, or whether number is instead judged indirectly on the basis of other quantitative features. We performed high-resolution 7 Tesla fMRI while adult human volunteers attended either to the numerosity or an orthogonal dimension (average item size) of visual dot arrays. Along the dorsal visual stream, numerosity explained a significant amount of variance in activation patterns, above and beyond non-numerical dimensions. Its representation was selectively amplified and progressively enhanced across the hierarchy when task relevant. Our results reveal a sensory extraction mechanism yielding information on numerosity separable from other dimensions already at early visual stages and suggest that later regions along the dorsal stream are most important for explicit manipulation of numerical quantity.

          eLife digest

          Numbers and the ability to count and calculate are an essential part of human culture. They are part of everyday life, featuring in calendars, computers or the weekly shop, but also in some of humanity’s biggest achievements: without them the pyramids or space travel would not exist. A precursor of sophisticated mathematical skill could reside in a simpler mental ability: the capacity to assess numerical quantities at a glance. This ‘number sense’ appears in humans in early childhood and it is also present in other animals, but it is still poorly understood.

          Brain imaging techniques have identified the parts of the brain that are active when perceiving numbers or making calculations. As techniques have advanced, it has become possible to resolve fine differences in brain activity that occur when people switch their attention between different visual tasks. But how exactly does the human brain process visual information to make sense of numbers? One theory suggests that humans use visual cues, such as the size of a group of objects or how densely packed objects are, to estimate numbers. On the other hand, it is also possible that humans can sense number directly, without reference to other properties of the group being observed.

          Castaldi et al. presented twenty adult volunteers with groups of dots and asked them to focus either on the number of dots or on the size of the dots during a brain scan. This approach allowed the separation of brain signals specific to number from signals corresponding to other visual cues, such as size or density of the group. The experiment revealed that brain activity changed depending on the number of dots displayed. The signal related to number became stronger when people focused on the number of dots, while signals related to other properties of the group remained unchanged. Moreover, brain signals for number were observed at the very early stages of visual processing, in the parts of the brain that receive input from the eyes first.

          These results suggest that the human visual system perceives number directly, and not by processing information about the size or density of a group of objects. This finding provides insights into how human brains encode numbers, which could be important to understand disorders where number sense can be impaired leading to difficulties learning math and operating with numbers.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Visual attention: the past 25 years.

          This review focuses on covert attention and how it alters early vision. I explain why attention is considered a selective process, the constructs of covert attention, spatial endogenous and exogenous attention, and feature-based attention. I explain how in the last 25 years research on attention has characterized the effects of covert attention on spatial filters and how attention influences the selection of stimuli of interest. This review includes the effects of spatial attention on discriminability and appearance in tasks mediated by contrast sensitivity and spatial resolution; the effects of feature-based attention on basic visual processes, and a comparison of the effects of spatial and feature-based attention. The emphasis of this review is on psychophysical studies, but relevant electrophysiological and neuroimaging studies and models regarding how and where neuronal responses are modulated are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI.

            Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k-space coverage in the phase-encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4-fold phase-encoding undersampling, resulting in 16-fold acceleration and up to 16-fold maximal aliasing, was investigated. Task/stimulus-induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single-band excitation and longer pulse repetition times. Robust, whole-brain functional mapping at 7 T, with 2 x 2 x 2mm(3) (pulse repetition time 1.25 sec) and 1 x 1 x 2mm(3) (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 x 256 x 176 mm(3) and 192 x 172 x 176 mm(3), respectively, was demonstrated with current gradient performance. (c) 2010 Wiley-Liss, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Automatically Parcellating the Human Cerebral Cortex

              B Fischl (2004)
                Bookmark

                Author and article information

                Contributors
                Role: Senior Editor
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                24 July 2019
                2019
                : 8
                : e45160
                Affiliations
                [1 ]deptCognitive Neuroimaging Unit CEA DRF/JOLIOT, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center Gif-sur-YvetteFrance
                [2 ]deptCenter for Mind/Brain Sciences University of Trento TrentoItaly
                [3 ]deptUNIRS CEA DRF/JOLIOT, Université Paris-Saclay, NeuroSpin Center Gif-sur-YvetteFrance
                University of Pennsylvania United States
                Western University Canada
                Western University Canada
                Western University Canada
                Author information
                https://orcid.org/0000-0003-0327-6697
                Article
                45160
                10.7554/eLife.45160
                6693892
                31339490
                46516a94-d630-4cde-a579-0037e43c3e72
                © 2019, Castaldi et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 21 January 2019
                : 18 July 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001665, Agence Nationale de la Recherche;
                Award ID: ANR-14-CE13-0020-01
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Neuroscience
                Custom metadata
                The representations of information concerning the number, size, density and surface of sets of objects in a visual image are separable along the occipito-parietal cortex and independently modulated by attention.

                Life sciences
                7t fmri,multivariate decoding,representational similarity analysis,number processing,dorsal visual stream,feature based attention,human

                Comments

                Comment on this article