13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Browsing Multiple Subjects When the Atlas Adaptation Cannot Be Achieved via a Warping Strategy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain mapping studies often need to identify brain structures or functional circuits into a set of individual brains. To this end, multiple atlases have been published to represent such structures based on different modalities, subject sets, and techniques. The mainstream approach to exploit these atlases consists in spatially deforming each individual data onto a given atlas using dense deformation fields, which supposes the existence of a continuous mapping between atlases and individuals. However, this continuity is not always verified, and this “iconic” approach has limits. We present in this study an alternative, complementary, “structural” approach, which consists in extracting structures from the individual data, and comparing them without deformation. A “structural atlas” is thus a collection of annotated individual data with a common structure nomenclature. It may be used to characterize structure shape variability across individuals or species, or to train machine learning systems. This study exhibits Anatomist, a powerful structural 3D visualization software dedicated to building, exploring, and editing structural atlases involving a large number of subjects. It has been developed primarily to decipher the cortical folding variability; cortical sulci vary enormously in both size and shape, and some may be missing or have various topologies, which makes iconic approaches inefficient to study them. We, therefore, had to build structural atlases for cortical sulci, and use them to train sulci identification algorithms. Anatomist can display multiple subject data in multiple views, supports all kinds of neuroimaging data, including compound structural object graphs, handles arbitrary coordinate transformation chains between data, and has multiple display features. It is designed as a programming library in both C++ and Python languages, and may be extended or used to build dedicated custom applications. Its generic design makes all the display and structural aspects used to explore the variability of the cortical folding pattern work in other applications, for instance, to browse axonal fiber bundles, deep nuclei, functional activations, or other kinds of cortical parcellations. Multimodal, multi-individual, or inter-species display is supported, and adaptations to large scale screen walls have been developed. These very original features make it a unique viewer for structural atlas browsing.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.

          An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute (MNI) (D. L. Collins et al., 1998, Trans. Med. Imag. 17, 463-468) was performed. The MNI single-subject main sulci were first delineated and further used as landmarks for the 3D definition of 45 anatomical volumes of interest (AVOI) in each hemisphere. This procedure was performed using a dedicated software which allowed a 3D following of the sulci course on the edited brain. Regions of interest were then drawn manually with the same software every 2 mm on the axial slices of the high-resolution MNI single subject. The 90 AVOI were reconstructed and assigned a label. Using this parcellation method, three procedures to perform the automated anatomical labeling of functional studies are proposed: (1) labeling of an extremum defined by a set of coordinates, (2) percentage of voxels belonging to each of the AVOI intersected by a sphere centered by a set of coordinates, and (3) percentage of voxels belonging to each of the AVOI intersected by an activated cluster. An interface with the Statistical Parametric Mapping package (SPM, J. Ashburner and K. J. Friston, 1999, Hum. Brain Mapp. 7, 254-266) is provided as a freeware to researchers of the neuroimaging community. We believe that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain in which deformations are well known. However, this tool does not alleviate the need for more sophisticated labeling strategies based on anatomical or cytoarchitectonic probabilistic maps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The organization of the human cerebral cortex estimated by intrinsic functional connectivity.

            Information processing in the cerebral cortex involves interactions among distributed areas. Anatomical connectivity suggests that certain areas form local hierarchical relations such as within the visual system. Other connectivity patterns, particularly among association areas, suggest the presence of large-scale circuits without clear hierarchical relations. In this study the organization of networks in the human cerebrum was explored using resting-state functional connectivity MRI. Data from 1,000 subjects were registered using surface-based alignment. A clustering approach was employed to identify and replicate networks of functionally coupled regions across the cerebral cortex. The results revealed local networks confined to sensory and motor cortices as well as distributed networks of association regions. Within the sensory and motor cortices, functional connectivity followed topographic representations across adjacent areas. In association cortex, the connectivity patterns often showed abrupt transitions between network boundaries. Focused analyses were performed to better understand properties of network connectivity. A canonical sensory-motor pathway involving primary visual area, putative middle temporal area complex (MT+), lateral intraparietal area, and frontal eye field was analyzed to explore how interactions might arise within and between networks. Results showed that adjacent regions of the MT+ complex demonstrate differential connectivity consistent with a hierarchical pathway that spans networks. The functional connectivity of parietal and prefrontal association cortices was next explored. Distinct connectivity profiles of neighboring regions suggest they participate in distributed networks that, while showing evidence for interactions, are embedded within largely parallel, interdigitated circuits. We conclude by discussing the organization of these large-scale cerebral networks in relation to monkey anatomy and their potential evolutionary expansion in humans to support cognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A fast diffeomorphic image registration algorithm.

              This paper describes DARTEL, which is an algorithm for diffeomorphic image registration. It is implemented for both 2D and 3D image registration and has been formulated to include an option for estimating inverse consistent deformations. Nonlinear registration is considered as a local optimisation problem, which is solved using a Levenberg-Marquardt strategy. The necessary matrix solutions are obtained in reasonable time using a multigrid method. A constant Eulerian velocity framework is used, which allows a rapid scaling and squaring method to be used in the computations. DARTEL has been applied to intersubject registration of 471 whole brain images, and the resulting deformations were evaluated in terms of how well they encode the shape information necessary to separate male and female subjects and to predict the ages of the subjects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroinform
                Front Neuroinform
                Front. Neuroinform.
                Frontiers in Neuroinformatics
                Frontiers Media S.A.
                1662-5196
                03 March 2022
                2022
                : 16
                : 803934
                Affiliations
                [1] 1Université Paris-Saclay, CEA, CNRS UMR 9027, Baobab, NeuroSpin , Gif-sur-Yvette, France
                [2] 2PaleoFED Team, UMR 7194, CNRS, Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme , Paris, France
                [3] 3INT - Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289 , Marseille, France
                [4] 4Department of Comparative Medicine, University of Texas MD Anderson Cancer Center , Bastrop, TX, United States
                [5] 5Department of African Zoology, Royal Museum for Central Africa , Tervuren, Belgium
                [6] 6Maison de la Simulation, CNRS, CEA Saclay , Gif-sur-Yvette, France
                [7] 7Université de Paris, INSERM UMR 1141, NeuroDiderot , Paris, France
                Author notes

                Edited by: Jean-Baptiste Poline, McGill University, Canada

                Reviewed by: Francois Rheault, Université de Sherbrooke, Canada; Lana Vasung, Harvard Medical School, United States

                *Correspondence: Denis Rivière, denis.riviere@ 123456cea.fr
                Article
                10.3389/fninf.2022.803934
                8928460
                35311005
                465684eb-0bac-4f65-b6ba-e571cdd97ece
                Copyright © 2022 Rivière, Leprince, Labra, Vindas, Foubet, Cagna, Loh, Hopkins, Balzeau, Mancip, Lebenberg, Cointepas, Coulon and Mangin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 October 2021
                : 17 January 2022
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 73, Pages: 16, Words: 11715
                Funding
                Funded by: Horizon 2020, doi 10.13039/501100007601;
                Funded by: Fondation pour la Recherche Médicale, doi 10.13039/501100002915;
                Funded by: Agence Nationale de la Recherche, doi 10.13039/501100001665;
                Funded by: Agence Nationale de la Recherche, doi 10.13039/501100001665;
                Funded by: Université Paris-Saclay, doi 10.13039/501100007241;
                Categories
                Neuroscience
                Technology and Code

                Neurosciences
                visualization,brain atlas,inter-subject,3d,parcellation atlas,structural approach
                Neurosciences
                visualization, brain atlas, inter-subject, 3d, parcellation atlas, structural approach

                Comments

                Comment on this article