23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interpersonal Multisensory Stimulation reduces the overwhelming distracting power of self-gaze: psychophysical evidence for ‘engazement'

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One's own face and gaze are never seen directly but only in a mirror. Yet, these stimuli capture attention more powerfully than others' face and gaze, suggesting the self is special for brain and behavior. Synchronous touches felt on one's own and seen on the face of others induce the sensation of including others in one's own face (enfacement). We demonstrate that enfacement may also reduce the overwhelming distracting power of self-gaze. This effect, hereafter called ‘engazement', depends on the perceived physical attractiveness and inner beauty of the pair partner. Thus, we highlight for the first time the close link between enfacement and engazement by showing that changes of the self-face representation induced by facial visuo-tactile stimulation extend to gaze following, a separate process likely underpinned by different neural substrates. Moreover, although gaze following is a largely automatic, engazement is penetrable to the influence of social variables, such as positive interpersonal perception.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective.

          Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Egocentric biases in availability and attribution.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: an event-related fMRI study.

              Self-recognition has been demonstrated by a select number of primate species and is often used as an index of self-awareness. Whether a specialized neural mechanism for self-face recognition in humans exists remains unclear. We used event-related fMRI to investigate brain regions selectively activated by images of one's own face. Ten right-handed normal subjects viewed digital morphs between their own face and a gender-matched familiar other presented in a random sequence. Subjects were instructed to press a button with the right hand if the image looked like their own face, and another button if it looked like a familiar or scrambled face. Contrasting the trials in which images contain more "self" with those containing more familiar "other" revealed signal changes in the right hemisphere (RH) including the inferior parietal lobule, inferior frontal gyrus, and inferior occipital gyrus. The opposite contrast revealed voxels with higher signal intensity for images of "other" than for "self" in the medial prefrontal cortex and precuneus. Additional contrasts against baseline revealed that activity in the "self" minus "other" contrasts represent signal increases compared to baseline (null events) in "self" trials, while activity in the "other" minus "self" contrasts represent deactivations relative to baseline during "self" trials. Thus, a unique network involving frontoparietal structures described as part of the "mirror neuron system" in the RH underlies self-face recognition, while regions comprising the "default/resting state" network deactivate less for familiar others. We provide a model that reconciles these findings and previously published work to account for the modulations in these two networks previously implicated in social cognition.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 October 2014
                2014
                : 4
                : 6669
                Affiliations
                [1 ]Department of Psychology, “Sapienza” University of Rome , Via dei Marsi 78, I-00185 Rome, Italy
                [2 ]Social and Cognitive Neuroscience Laboratory, IRCCS Santa Lucia Foundation , Via Ardeatina 306, I-00179 Rome, Italy
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep06669
                10.1038/srep06669
                5377579
                25327255
                4659927b-6fbc-43d2-8320-067a9cde7f83
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 16 January 2014
                : 25 June 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article