4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Retinal Vascularity Index in Patients with COVID-19: A Case–Control Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The purpose of this study was to evaluate the impact of COVID-19 infection on retinal microvasculature by topographically mapping the retinal arteriole-to-venule ratio (AVR).

          Methods

          In a comparative cross-sectional case–control study, fundus photos were obtained in COVID-19-infected patients and healthy controls. AVT was measured over 16 points across the retina using retinal vascularity index (RVI)—a novel semi-automated computerized parameter based on retinal vasculature.

          Results

          A total of 51 COVID-19-positive patients and 65 healthy controls were enrolled in the study. Overall, the mean RVI of all 16 points across the retina was 0.34 ± 0.02 in patients with COVID-19 and 0.33 ± 0.02 in control subjects ( p = 0.64). Out of the 16 points being measured, three points had a statistically significant greater value in patients with COVID compared to normal controls.

          Conclusion

          Localised greater RVI values were found in some of the points in COVID-19-positive patients, which likely indicates a more focal change of the vasculature.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial cell infection and endotheliitis in COVID-19

          Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.1, 2 SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells. 3 Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently unknown. Intriguingly, SARS-CoV-2 can directly infect engineered human blood vessel organoids in vitro. 4 Here we demonstrate endothelial cell involvement across vascular beds of different organs in a series of patients with COVID-19 (further case details are provided in the appendix). Patient 1 was a male renal transplant recipient, aged 71 years, with coronary artery disease and arterial hypertension. The patient's condition deteriorated following COVID-19 diagnosis, and he required mechanical ventilation. Multisystem organ failure occurred, and the patient died on day 8. Post-mortem analysis of the transplanted kidney by electron microscopy revealed viral inclusion structures in endothelial cells (figure A, B ). In histological analyses, we found an accumulation of inflammatory cells associated with endothelium, as well as apoptotic bodies, in the heart, the small bowel (figure C) and lung (figure D). An accumulation of mononuclear cells was found in the lung, and most small lung vessels appeared congested. Figure Pathology of endothelial cell dysfunction in COVID-19 (A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow; about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant mononuclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections. COVID-19=coronavirus disease 2019. Patient 2 was a woman, aged 58 years, with diabetes, arterial hypertension, and obesity. She developed progressive respiratory failure due to COVID-19 and subsequently developed multi-organ failure and needed renal replacement therapy. On day 16, mesenteric ischaemia prompted removal of necrotic small intestine. Circulatory failure occurred in the setting of right heart failure consequent to an ST-segment elevation myocardial infarction, and cardiac arrest resulted in death. Post-mortem histology revealed lymphocytic endotheliitis in lung, heart, kidney, and liver as well as liver cell necrosis. We found histological evidence of myocardial infarction but no sign of lymphocytic myocarditis. Histology of the small intestine showed endotheliitis (endothelialitis) of the submucosal vessels. Patient 3 was a man, aged 69 years, with hypertension who developed respiratory failure as a result of COVID-19 and required mechanical ventilation. Echocardiography showed reduced left ventricular ejection fraction. Circulatory collapse ensued with mesenteric ischaemia, and small intestine resection was performed, but the patient survived. Histology of the small intestine resection revealed prominent endotheliitis of the submucosal vessels and apoptotic bodies (figure C). We found evidence of direct viral infection of the endothelial cell and diffuse endothelial inflammation. Although the virus uses ACE2 receptor expressed by pneumocytes in the epithelial alveolar lining to infect the host, thereby causing lung injury, the ACE2 receptor is also widely expressed on endothelial cells, which traverse multiple organs. 3 Recruitment of immune cells, either by direct viral infection of the endothelium or immune-mediated, can result in widespread endothelial dysfunction associated with apoptosis (figure D). The vascular endothelium is an active paracrine, endocrine, and autocrine organ that is indispensable for the regulation of vascular tone and the maintenance of vascular homoeostasis. 5 Endothelial dysfunction is a principal determinant of microvascular dysfunction by shifting the vascular equilibrium towards more vasoconstriction with subsequent organ ischaemia, inflammation with associated tissue oedema, and a pro-coagulant state. 6 Our findings show the presence of viral elements within endothelial cells and an accumulation of inflammatory cells, with evidence of endothelial and inflammatory cell death. These findings suggest that SARS-CoV-2 infection facilitates the induction of endotheliitis in several organs as a direct consequence of viral involvement (as noted with presence of viral bodies) and of the host inflammatory response. In addition, induction of apoptosis and pyroptosis might have an important role in endothelial cell injury in patients with COVID-19. COVID-19-endotheliitis could explain the systemic impaired microcirculatory function in different vascular beds and their clinical sequelae in patients with COVID-19. This hypothesis provides a rationale for therapies to stabilise the endothelium while tackling viral replication, particularly with anti-inflammatory anti-cytokine drugs, ACE inhibitors, and statins.7, 8, 9, 10, 11 This strategy could be particularly relevant for vulnerable patients with pre-existing endothelial dysfunction, which is associated with male sex, smoking, hypertension, diabetes, obesity, and established cardiovascular disease, all of which are associated with adverse outcomes in COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19

            Progressive respiratory failure is the primary cause of death in the coronavirus disease 2019 (Covid-19) pandemic. Despite widespread interest in the pathophysiology of the disease, relatively little is known about the associated morphologic and molecular changes in the peripheral lung of patients who die from Covid-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle

              Since December 2019, a total of 41 cases of pneumonia of unknown etiology have been confirmed in Wuhan city, Hubei Province, China. Wuhan city is a major transportation hub with a population of more than 11 million people. Most of the patients visited a local fish and wild animal market last month. At a national press conference held today, Dr Jianguo Xu, an academician of the Chinese Academy of Engineering, who led a scientific team announced that a new‐type coronavirus, tentatively named by World Health Organization as the 2019‐new coronavirus (2019‐nCoV), had caused this outbreak. 1 The 2019‐nCoV has a different coronavirus‐specific nucleic acid sequence from known human coronavirus species, which are similar to some of the beta coronaviruses identified in bats. 2 , 3 The virus‐specific nucleic acid sequences were detected in lung fluid, blood and throat swab samples in 15 patients and the virus that was isolated showed a typical coronavirus appearance under electron microscopy. Further research will be conducted to better understand the new coronavirus to develop antiviral agents and vaccines. 4 We applauded the excellent job that has been done so far. The infection was first described in December. Within 9 days, a special team consisted of physicians, scientists and epidemiologists who ruled out several extremely contagious pathogens including SARS, which killed hundreds of people more than a decade ago, and MERS. This has surely alleviated environmental concerns as Hong Kong authorities had quickly stepped up the disinfection of trains and airplanes and checks of passengers due to this outbreak. Most of the patients visited the fish and wild animal market last month in Wuhan. This fish and wild animal market also sold live animals such as poultry, bats, marmots, and snakes. All patients received prompt supportive treatment in quarantine. Among them, seven patients were in serious condition and one patient died. All of the 42 patients so far confirmed were from China except one Thailand patient who was a traveler from Wuhan. Eight patients have been cured of the disease and were discharged from the hospital last week. The 2019‐nCoV now have been isolated from multiple patients and appears to be the culprit. But the mystery has not been completely solved yet. Until there is a formal published scientific manuscript, the facts can be argued, particularly regarding causality despite these facts having been officially announced. The data collected so far is not enough to confirm the causal relationship between the new‐type coronavirus and the respiratory disease based on classical Koch's postulates or modified ones as suggested by Fredricks and Relman. 5 The viral‐specific nucleic acids were only discovered in 15 patients, and successful virus culture was extremely limited to only a few patients. There remains considerable work to be done to differentiate between colonization, shedding, and infection. Additional strains of the 2019‐nCoV need to be isolated to study their homologies. It is expected that antigens and monoclonal antibodies will be developed so serology can be used to confirm previous and acute infection status. The episode demonstrates further the need for rapid and accurate detection and identification methods that can be used in the local hospitals and clinics bearing the burden of identifying and treating patients. Recently, the Clinical Laboratory Improvement Amendments (CLIA) of 1988 has waived highly sensitive and specific molecular devices known as CLIA‐waived devices so that these devices are gradually becoming available for point of care testing. Finally, the epidemiological similarity between this outbreak and that of SARS in 2002‐2003 6 is striking. SARS was then traced to animal markets 7 and eventually to palm civets. 8 Later bats were identified as animal reservoirs. 9 Could this novel coronavirus be originated from wild animals? The family Coronaviridae includes two subfamilies. 10 One, the subfamily Coronavirinae, contains a substantial number of pathogens of mammals that individually cause a remarkable variety of diseases, including pneumonia. In humans, coronaviruses are among the spectrum of viruses that cause the common cold as well as more severe respiratory disease—specifically SARS and MERS, which are both zoonoses. The second subfamily, Torovirinae, contains pathogens of both terrestrial and aquatic animals. The genus Torovirus includes the type species, equine torovirus (Berne virus), which was first isolated from a horse with diarrhea, and the Breda virus, which was first isolated from neonatal calves with diarrhea. White bream virus from fish is the type species of the genus Bafinivirus. However, there is no evidence so far that the seafood from the fish and animal market caused 2019‐nCoV‐associated pneumonia. This epidemiologic similarity clearly provides a starting point for the further investigation of this outbreak. In the meantime, this fish and animal market has been closed until the epidemiological work determines the animal host of this novel coronavirus. Only then will the miracle be complete.
                Bookmark

                Author and article information

                Contributors
                Rupesh_agrawal@ttsh.com.sg
                Journal
                Ophthalmol Ther
                Ophthalmol Ther
                Ophthalmology and Therapy
                Springer Healthcare (Cheshire )
                2193-8245
                2193-6528
                22 December 2022
                22 December 2022
                : 1-16
                Affiliations
                [1 ]GRID grid.240988.f, ISNI 0000 0001 0298 8161, Khoo Teck Puat Hospital, Ophthalmology and Visual Science, National Health Group Eye Institute, , Tan Tock Seng Hospital, ; Singapore, 308433 Singapore
                [2 ]Radical Health, New Delhi, India
                [3 ]Masina Hospital, Mumbai, India
                [4 ]Unison Medicare and Research Centre, Mumbai, India
                [5 ]GRID grid.240988.f, ISNI 0000 0001 0298 8161, Department of Ophthalmology, National Healthcare Group Eye Institute, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [6 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, Lee Kong Chian School of Medicine, , Nanyang Technological University, ; Singapore, Singapore
                [7 ]GRID grid.460854.b, ISNI 0000 0004 1803 871X, Aditya Jyot Eye Hospital, ; Mumbai, India
                [8 ]GRID grid.419272.b, ISNI 0000 0000 9960 1711, Singapore Eye Research Institute, , Singapore National Eye Center, ; Singapore, Singapore
                [9 ]GRID grid.428397.3, ISNI 0000 0004 0385 0924, Ophthalmology and Visual Sciences Academic Clinical Program, , Duke-NUS Medical School, ; Singapore, Singapore
                Author information
                http://orcid.org/0000-0002-6662-5850
                Article
                630
                10.1007/s40123-022-00630-8
                9774073
                36547863
                466d2cc4-4684-4045-874f-ed2885d0134f
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 14 August 2022
                : 30 November 2022
                Categories
                Original Research

                retinal vascularity index,rvi,choroid,covid-19,arteriole-to-venule ratio,avr

                Comments

                Comment on this article