10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Muscular characteristics of detraining in humans :

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle is characterized by its ability to dynamically adapt to variable levels of functional demands. During periods of insufficient training stimulus, muscular detraining occurs. This may be characterized by a decreased capillary density, which could take place within 2--3 wk of inactivity. Arterial-venous oxygen difference declines if training stoppage continues beyond 3--8 wk. Rapid and progressive reductions in oxidative enzyme activities bring about a reduced mitochondrial ATP production. The above changes are related to the reduction in VO(2max) observed during long-term training cessation. These muscular characteristics remain above sedentary values in the detrained athlete but usually return to baseline values in recently trained individuals. Glycolytic enzyme activities show nonsystematic changes during periods of training cessation. Fiber distribution remains unchanged during the initial weeks of inactivity, but oxidative fibers may decrease in endurance athletes and increase in strength-trained athletes within 8 wk of training stoppage. Muscle fiber cross-sectional area declines rapidly in strength and sprint athletes, and in recently endurance-trained subjects, whereas it may increase slightly in endurance athletes. Force production declines slowly and in relation to decreased EMG activity. Strength performance in general is readily maintained for up to 4 wk of inactivity, but highly trained athletes' eccentric force and sport-specific power, and recently acquired isokinetic strength, may decline significantly.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps.

          Four male subjects aged 23-34 years were studied during 60 days of unilateral strength training and 40 days of detraining. Training was carried out four times a week and consisted of six series of ten maximal isokinetic knee extensions at an angular velocity of 2.09 rad.s-1. At the start and at every 20th day of training and detraining, isometric maximal voluntary contraction (MVC), integrated electromyographic activity (iEMG) and quadriceps muscle cross-sectional area (CSA) assessed at seven fractions of femur length (Lf), by nuclear magnetic resonance imaging, were measured on both trained (T) and untrained (UT) legs. Isokinetic torques at 30 degrees before full knee extension were measured before and at the end of training at: 0, 1.05, 2.09, 3.14, 4.19, 5.24 rad.s-1. After 60 days T leg CSA had increased by 8.5% +/- 1.4% (mean +/- SEM, n = 4, p less than 0.001), iEMG by 42.4% +/- 16.5% (p less than 0.01) and MVC by 20.8% +/- 5.4% (p less than 0.01). Changes during detraining had a similar time course to those of training. No changes in UT leg CSA were observed while iEMG and MVC increased by 24.8% +/- 10% (N.S.) and 8.7% +/- 4.3% (N.S.), respectively. The increase in quadriceps muscle CSA was maximal at 2/10 Lf (12.0% +/- 1.5%, p less than 0.01) and minimal, proximally to the knee, at 8/10 Lf (3.5% +/- 1.2%, N.S.). Preferential hypertrophy of the vastus medialis and intermedius muscles compared to those of the rectus femoris and lateralis muscles was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles.

            To investigate the influence of explosive type strength training on isometric force- and relaxation-time and on electromyographic and muscle fibre characteristics of human skeletal muscle, 10 male subjects went through progressive training which included primarily jumping exercises without extra load and with light extra weights three times a week for 24 weeks. Specific training-induced changes in force-time curve were observed and demonstrated by great (P less than 0.05-0.01) improvements in in parameters of fast force production and by a minor (P less than 0.05) increase in maximal force. The continuous increases in fast force production during the entire training were accompanied by and correlated with the increases (P less than 0.05) in average IEMG-time curve and with the increase (P less than 0.05) in the FT:ST muscle fibre area ratio. The percentage of FT fibres of the muscle correlated (P less than 0.05) with the improvement of average force-time curve during the training. The increase in maximal force was accompanied by significant (P less than 0.05) increases in maximum IEMGs of the trained muscles. However, the hypertrophic changes, as judged from the anthropometric and muscle fibre area data, were only slight during the training. It can be concluded that in training for fast force production considerable neural and selective muscular adaptations may occur to explain the improvement in performance, but that genetic factors may determine the ultimate potential of the trainability of this aspect of the neuromuscular performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining.

              Six male subjects exercised on a bicycle ergometer 30 min with left leg and 30 min with right leg 3 times a week for 8 weeks. This training resulted in a 14.6% increase in VO2 max with two-leg exercise and a 23.1% increase with one-leg exercise. A significant decrease towards pretraining VO2 max was seen during the following 8 weeks of detraining. Muscle biopsy samples were obtained at rest from m. vastus lateralis before and after training and 4 and 8 weeks after training. During training the number of capillaries per mm2 and the number of capillaries per fiber increased about 20%. The number of capillaries around each fiber type (CA) increased 20--30%. The average area of each fibre type increased only about 5%. The fibre area per CA decreased by about 10%. During 8 weeks of detraining decreases were seen in the number of capillaries per fibre, CA and in fibre area, while fibre area per CA and number of capillaries per mm2 were almost unchanged at the end of the detraining period. Pronounced increases in activities of oxidative enzymes were observed after training, while only minor increases were seen in glycolytic enzyme activities. All enzyme activities decreased towards pre-training levels during detraining. The results indicate that the training-induced improvement in oxidative capacity and in muscle capillarization expressed as capillaries per fibre and CA disappears within 8 weeks after cessation of training. However, the fibre area per CA and number of capillaries per mm2 point at a favourable long term effect on the average diffusion distance between capillaries and muscle fibres.
                Bookmark

                Author and article information

                Journal
                Medicine and Science in Sports and Exercise
                Medicine and Science in Sports and Exercise
                Ovid Technologies (Wolters Kluwer Health)
                0195-9131
                2001
                August 2001
                : 33
                : 8
                : 1297-1303
                Article
                10.1097/00005768-200108000-00009
                11474330
                467ac3c5-501b-42d4-88d3-697839d3f087
                © 2001
                History

                Comments

                Comment on this article