23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neurodevelopment for syntactic processing distinguishes childhood stuttering recovery versus persistence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Characterized by the presence of involuntary speech disfluencies, developmental stuttering is a neurodevelopmental disorder of atypical speech-motor coordination. Although the etiology of stuttering is multifactorial, language development during early childhood may influence both the onset of the disorder and the likelihood of recovery. The purpose of this study was to determine whether differences in neural indices mediating language processing are associated with persistence or recovery in school-age children who stutter.

          Methods

          Event-related brain potentials (ERPs) were obtained from 31 6–7-year-olds, including nine children who do not stutter (CWNS), 11 children who had recovered from stuttering (CWS-Rec), and 11 children who persisted in stuttering (CWS-Per), matched for age, and all with similar socioeconomic status, nonverbal intelligence, and language ability. We examined ERPs elicited by semantic and syntactic (phrase structure) violations within an auditory narrative consisting of English and Jabberwocky sentences. In Jabberwocky sentences, content words were replaced with pseudowords to limit semantic context. A mixed effects repeated measures analysis of variance (ANOVA) was computed for ERP components with four within-subject factors, including condition, hemisphere, anterior/posterior distribution, and laterality.

          Results

          During the comprehension of English sentences, ERP activity mediating semantic and syntactic (phrase structure) processing did not distinguish CWS-Per, CWS-Rec, and CWNS. Semantic violations elicited a qualitatively similar N400 component across groups. Phrase structure violations within English sentences also elicited a similar P600 component in all groups. However, identical phrase structure violations within Jabberwocky sentences elicited a P600 in CWNS and CWS-Rec, but an N400-like effect in CWS-Per.

          Conclusions

          The distinguishing neural patterns mediating syntactic, but not semantic, processing provide evidence that specific brain functions for some aspects of language processing may be associated with stuttering persistence. Unlike CWS-Rec and CWNS, the lack of semantic context in Jabberwocky sentences seemed to affect the syntactic processing strategies of CWS-Per, resulting in the elicitation of semantically based N400-like activity during syntactic (phrase structure) violations. This vulnerability suggests neural mechanisms associated with the processing of syntactic structure may be less mature in 6–7-year-old children whose stuttering persisted compared to their fluent or recovered peers.

          Related collections

          Most cited references128

          • Record: found
          • Abstract: found
          • Article: not found

          Socioeconomic status and the developing brain.

          Childhood socioeconomic status (SES) is associated with cognitive achievement throughout life. How does SES relate to brain development, and what are the mechanisms by which SES might exert its influence? We review studies in which behavioral, electrophysiological and neuroimaging methods have been used to characterize SES disparities in neurocognitive function. These studies indicate that SES is an important predictor of neurocognitive performance, particularly of language and executive function, and that SES differences are found in neural processing even when performance levels are equal. Implications for basic cognitive neuroscience and for understanding and ameliorating the problems related to childhood poverty are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ERPLAB: an open-source toolbox for the analysis of event-related potentials

            ERPLAB toolbox is a freely available, open-source toolbox for processing and analyzing event-related potential (ERP) data in the MATLAB environment. ERPLAB is closely integrated with EEGLAB, a popular open-source toolbox that provides many EEG preprocessing steps and an excellent user interface design. ERPLAB adds to EEGLAB’s EEG processing functions, providing additional tools for filtering, artifact detection, re-referencing, and sorting of events, among others. ERPLAB also provides robust tools for averaging EEG segments together to create averaged ERPs, for creating difference waves and other recombinations of ERP waveforms through algebraic expressions, for filtering and re-referencing the averaged ERPs, for plotting ERP waveforms and scalp maps, and for quantifying several types of amplitudes and latencies. ERPLAB’s tools can be accessed either from an easy-to-learn graphical user interface or from MATLAB scripts, and a command history function makes it easy for users with no programming experience to write scripts. Consequently, ERPLAB provides both ease of use and virtually unlimited power and flexibility, making it appropriate for the analysis of both simple and complex ERP experiments. Several forms of documentation are available, including a detailed user’s guide, a step-by-step tutorial, a scripting guide, and a set of video-based demonstrations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Towards a neural basis of auditory sentence processing.

              Functional dissociations within the neural basis of auditory sentence processing are difficult to specify because phonological, syntactic and semantic information are all involved when sentences are perceived. In this review I argue that sentence processing is supported by a temporo-frontal network. Within this network, temporal regions subserve aspects of identification and frontal regions the building of syntactic and semantic relations. Temporal analyses of brain activation within this network support syntax-first models because they reveal that building of syntactic structure precedes semantic processes and that these interact only during a later stage.
                Bookmark

                Author and article information

                Contributors
                eusler@purdue.edu
                weberfox@purdue.edu
                Journal
                J Neurodev Disord
                J Neurodev Disord
                Journal of Neurodevelopmental Disorders
                BioMed Central (London )
                1866-1947
                1866-1955
                20 January 2015
                2015
                : 7
                : 1
                : 4
                Affiliations
                Department of Speech, Language, and Hearing Sciences, Purdue University, Lyles-Porter Hall, 715 Clinic Drive, West Lafayette, IN 47907 USA
                Article
                97
                10.1186/1866-1955-7-4
                4318174
                467cd0c8-c6ae-48bb-a2b1-cacfa22f6092
                © Usler and Weber-Fox; licensee BioMed Central. 2015

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 July 2014
                : 26 December 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Neurosciences
                stuttering,event-related potentials,language processing,language development,n400,p600,children

                Comments

                Comment on this article