66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective mechanical ventilation in the non-injured lung: review and meta-analysis

      review-article
      1 , 2 , 3 ,
      Critical Care
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction Acute respiratory distress syndrome (ARDS) is one of the main causes of mortality in critically ill patients. Injured lungs can be protected by optimum mechanical ventilator settings, using low tidal volume (VT) values and higher positive-end expiratory pressure (PEEP); the benefits of this protective strategy on outcomes have been confirmed in several prospective randomized controlled trials (RCTs). The question is whether healthy lungs need specific protective ventilatory settings when they are at risk of injury. We performed a systematic review of the scientific literature and a meta-analysis regarding the rationale of applying protective ventilatory strategies in patients at risk of ARDS in the perioperative period and in the intensive care unit (ICU). Mechanism of ventilator-induced lung injury in healthy lungs Several studies have reported the multiple hit theory as the main cause of ARDS in previously healthy lungs (transfusion, cardiopulmonary bypass [CPB], sepsis etc.). Recently, many investigators have reported that, in healthy lungs, mechanical ventilation can aggravate the 'one hit' ventilator-induced lung injury (VILI), even when using the least injurious settings. The pathophysiologic principles of VILI are complex and characterized by different overlapping interactions. These interactions include: (a) high VT causing over distension; (b) cyclic closing and opening of peripheral airways during tidal breath resulting in damage of both the bronchiolar epithelium and the parenchyma (lung strain), mainly at the alveolar-bronchiolar junctions; (c) lung stress by increased transpulmonary pressure (the difference between alveolar and pleural pressure); (d) low lung volume associated with recruitment and de-recruitment of unstable lung units (atelectrauma); (e) inactivation of surfactant by large alveolar surface area oscillations associated with surfactant aggregate conversion, which increases surface tension [1]; (f) local and systemic release of lung-borne inflammatory mediators, namely biotrauma [2]. Recent experimental and clinical studies have demonstrated two main mechanisms leading to VILI: First, direct trauma to the cell promoting releasing of cytokines to the alveolar space and the circulation; second, the so-called 'mechanotransduction' mechanism. Cyclic stretch during mechanical ventilation stimulates alveolar epithelial and vascular endothelial cells through mechano-sensitive membrane-associated protein and ion channels [3]. High VT ventilation led to an increase in expression of intrapulmonary tumor necrosis factor (TNF)-α and macrophage inflammatory protein-2 in mice without previous lung injury [4] and recruited leukocytes to endothelial cells [3]. Tissue deformation activates nuclear factor-kappa B (NF-κΒ) signaling consequent to the production of interleukin (IL)-6, IL-8, IL-1β and TNF-α [3]. The cellular necrosis is associated with an inflammatory response in surrounding lung tissue [3]. Mechanotransduction is the conversion of mechanical stimuli to a biochemical response when alveolar epithelium or vascular endothelium is stretched during mechanical ventilation. The stimulus causes expansion of the plasma membrane and triggers cellular signaling via various inflammatory mediators influencing pulmonary and systemic cell dysfunction [3]. A high level of mechanical stretch is associated with increased epithelial cell necrosis, decreased apoptosis and increased IL-8 level [3]. Extracellular matrix (ECM), a three-dimensional fiber mesh, is composed of collagen, elastin, glycosamino- glycans (GAGs) and proteoglycans. The ECM represents the biomechanical behavior of the lung and plays a role in stabilizing lung matrix and fluid content. Mechanotrans- duction causes the mechanical force on ECM that causes the lung strain (the ratio between VT and functional residual capacity [FRC]). High VT ventilation causes ECM remodeling, influenced by the airway pressure gradient and the pleural pressure gradient [2], [5]. In animal models, VILI, defined by lung edema formation, develops when lung strain is greater than 1.5-2 [6]. Cyclic mechanical stress causes release and activation of matrix metalloproteinase (MMP). MMP plays an important role in regulating ECM remodeling and VILI. Lung strain also leads to modification of proteoglycan and GAGs. The fragmentation of GAGs may affect the development of the inflammatory response by interacting with various types of chemokine and acting as ligands for Toll-like receptors [5], [7]. In addition, the ECM has been demonstrated to be the signal of matrikines requiring proteolytic breakdown. Mechanical strain induces ECM breakdown [5]. During the perioperative period, general anesthesia and deep sedation with or without muscle paralysis markedly affect lung structure by reducing the tone of respiratory muscles and altering diaphragmatic position [8]. A direct effect of anesthetics on pulmonary surfactant, as well as the weight of the heart and greater intra-abdominal pressure in the supine position, promotes collapse of dependent lung regions and partial collapse of mid-pulmonary regions as a consequence of the reduction in end-expiratory lung volume. These alterations promote: (a) increase in lung elastance; (b) increase in lung resistance; and (c) impairment in gas exchange. The morphological alterations of the lungs are sustained at least for the first 24-72 hours postoperatively, particularly in patients undergoing high-risk surgery. In addition these alterations facilitate rapid shallow breathing and increased work of breathing as well as impaired gas-exchange [9] (Figure 1). Protective ventilation strategies The previously mentioned mechanisms have encouraged intensive care physicians and anesthesiologists to consider 'protective ventilation strategies' in vulnerable noninjured lungs, which use physiologic low VT values, moderate to high levels of PEEP and/or recruitment maneuvers. Tidal volume, positive end-expiratory pressure and recruitment maneuvers In surgery A recent large prospective cohort study conducted in different types of surgery demonstrated that the incidence of in-hospital mortality was about as high as the incidence of postoperative pulmonary complications which were associated with prolonged hospital stays [10]. Historically, use of large VT (10-15 ml/kg) was advocated during the perioperative period to prevent impaired oxygenation and re-open collapsed lung units [11]. Nowadays, lung protective ventilation has become the standard of care in patients with ARDS. Secondary analysis of the ARDS network trial database revealed that the reduction in VT from 12 to 6 ml/kg predicted body weight (PBW) yielded benefit, regardless of the level of plateau pressure [12]. Over the last few decades, clinicians have tended to decrease VT from 8.8 ml/kg actual body weight (ABW) to 6.9 ml/kg ABW in critically ill patients [13]. Applying a PEEP > 8 cm H2O and using recruitment maneuvers may increase end-expiratory lung volume (EELV) beyond airway closure, certainly preventing atelectasis. However, the adverse effect of PEEP and recruitment maneuvers is a possible reduction in right ventricular (RV) preload and an increase in RV afterload. These consequences may lead to lower stroke volume and potentially became problematic during surgery. Therefore, the role of low VT ventilation and moderate to high PEEP levels with recruitment maneuvers in previously non-injured lungs is still controversial during surgery. In terms of lung mechanics and gas exchange, during cardiac surgery protective ventilation with a VT of 6 ml/ kg and PEEP 5 cm H2O can improve lung mechanics and prevent postoperative shunting compared to conventional or standard ventilation with VT of 12 ml/kg and PEEP 5 cm H2O [14]. In patients undergoing CPB surgery, Koner et al. found no differences in plasma levels of TNF-α or IL-6 in patients ventilated with VT of 6 ml/kg plus PEEP 5 cm H2O, with VT 10 ml/kg plus PEEP 5 cm H2O or with VT 10 ml/kg but zero end-expiratory pressure (ZEEP)[15]. Wrigge et al. also reported that ventilation with VT of 6 ml/kg or with 12 ml/kg for 6 hours did not affect serum TNF-α, IL-6, or IL-8 concentrations in CPB surgery; only bronchoalveolar lavage (BAL) fluid TNF-α levels were significantly higher in the higher VT group [16]. In contrast, Zupancich et al. showed that serum and BAL fluid IL-6 and IL-8 levels were elevated in a conventional ventilation group compared to a protective ventilation group after 6 hours of ventilation [17]. During major thoracic and abdominal surgery, there was no difference in the time course of tracheal aspirate and plasma TNF-α, IL-1, IL-6, IL-8, IL-12, or IL-10 in patients receiving conventional ventilation (VT 12-15 ml/ kg ideal body weight [IBW] and PEEP 0 cm H2O) and those receiving protective ventilation (VT 6 ml/kg IBW and PEEP 10 cm H2O) [18]. In abdominal surgery, Wolthuis et al. demonstrated attenuation of pulmonary IL-8, myeloperoxidase and elastase in a protective ventilation group [19]. In terms of clinical outcomes, elderly patients undergoing major abdominal surgery ventilated with 6 ml/kg PBW, 12 cm H2O PEEP and receiving a recruitment maneuver by sequentially increasing PEEP in 3 steps to 20 cm H2O had no hemodynamic effects and achieved better intraoperative PaO2 and dynamic lung compliance compared with patients receiving conventional ventilation with VT 10 ml/kg without PEEP and recruitment maneuvers. However, this study showed no differences in IL-6 and IL-8 levels [20]. Figure 1 Pathophysiology of ventilator-induced lung injury (VILI) in non-injured lungs and the lung-protective ventilatory approach. VT: tidal volume; PBW: predicted body weight; PEEP: positive end-expiratory pressure; ARDS: acute respiratory distress syndrome; ECM: extracellular matrix. In a prospective study of 3434 cardiac surgery patients, only 21 % of patients received VT < 10 ml/kg PBW; VT values of more than 10 ml/kg PBW were an independent risk factor for multiple organ failure [21]. Obesity, female gender and short height are risk factors for receiving VT of more than 10 ml/kg [22]. Treschan et al. demonstrated that applying VT of 6 ml/ kg PBW during major abdominal surgery did not attenuate postoperative lung function impairment compared to VT values of 12 ml/kg PBW with the same PEEP level of 5 cm H2O [23]. However, Severgnini et al. showed that compared to conventional ventilation (VT 9 ml/kg IBW without PEEP), application of protective ventilation during abdominal surgery lasting more than 2 hours (VT 7 ml/kg IBW, PEEP 10 cm H2O, and recruitment maneuver) improved pulmonary function tests for up to 5 days, with reduced modified Clinical Pulmonary Infection Scores (mCPIS), lower rates of postoperative pulmonary complications, and better oxygenation [24]. A study conducted by Futier et al. (IMPROVE study) emphasizes the benefits of low VT with PEEP and recruitment maneuver. This large RCT demonstrated that major pulmonary and extrapulmonary complications within 7 days after major abdominal surgery occurred in 21 patients (10.5 %) in the protective ventilation group (VT 6-8 ml/kg PBW, PEEP 6-8 cm H2O and recruitment maneuver) compared with 55 patients (27.5 %) in the conventional ventilation group (VT 1012 ml/kg PBW without PEEP); furthermore, patients in the protective ventilation group had shorter lengths of hospital stay than those in the conventional group [25]. Higher VT ventilation seems to be an inflammatory stimulus for the lungs. However, as shown in the studies mentioned earlier, in terms of resultant local and systemic inflammatory responses processes, results are still debated [15], [16], [18], [26]. Application of lower VT is challenging because it can possibly increase the risk of atelectasis. Nevertheless, Cai et al. showed that applying ventilation with VT of 6 ml/kg alone was associated with no difference in the amount of atelectasis compared to ventilation with VT of 10 ml/kg [27] and application of improve lung mechanics, gas exchange and decrease the PEEP may additionally counteract this effect [24]. Several incidence of postoperative pulmonary complications studies have shown that protective ventilation can [24], [25], [28] (Table 1). Table 1 Characteristics and impact of protective ventilation in surgical patients Protective ventilation Standard ventilation First author, Year[Ref] No Design Patient population Tidal volume PEEP(cmH2O) Tidal volume PEEP(cmH2O) Main outcome of protective ventilation Chaney 2000 [14] 25 RCT CABG 6 ml/kg ≥ 5 12 ml/kg ≥ 5 Better lung mechanics and less shunt Wrigge 2004 [18] 62 RCT Major thoracic or abdominal surgery 6 ml/kg IBW 10 12 or 15 ml/ kg IBW 0 No difference in BAL or plasma cytokines Koner 2004 [15] 44 RCT CABG 6 ml/kg 5 10 ml/kg 10 ml/kg 50 No difference in plasma cytokines, better oxygenation in PEEP groups Wrigge 2005 [16] 44 RCT CABG 6 ml/kg IBW 9a 12 ml/kg IBW 7a No difference in BAL and plasma cytokines Zupancich 2005 [17] 40 RCT CABG 8 ml/kg 10 10 ml/kg 2-3 Decrease in BAL and plasma cytokines Cai2006 [27] 16 RCT Neurosurgery 6 ml/kg 0 10 ml/kg 0 No difference in amount of atelectasis or gas exchange Determann 2008 [26] 40 RCT Abdominalsurgery 6 ml/kg IBW 10 12 ml/kg IBW 0 No difference in BAL and plasma of Clara cell protein, advanced glycation end products and surfactant proteins Wolthuis 2008 [19] 40 RCT Abdominalsurgery 6 ml/kg IBW 10 12 ml/kg IBW 0 Attenuated the increase in BAL myeloperoxidase Weingarten 2010 [20] 40 RCT Abdominal surgery Age > 65 years 6 ml/kg PBWb 12 10 ml/kg PBW 0 Better intraoperative oxygenation, no difference in biomarkers Fernandez-Bustamante 2011 [22] 429 Crosssectional Abdominalsurgery < 8 ml/kg PBW 8-10 ml/kg PBW - 10 mL/kg PBW - Obesity, female gender or short height risk factors for receiving large VT Sundar 2011 [28] 149 RCT Cardiac surgery 6 ml/kg PBW ≥ 5a 10 ml/kg PBW ≥ 5a Less postoperative reintubation and intubated patients at 6-8 hours after surgery. Lellouche 2012 [21] 3434 Observational Cardiac surgery < 10 ml/kg PBW - 10-12 ml/kg PBW > 12 ml/kg PBW - - VT > 10 ml/kg independent risk factor for organ failure and prolonged ICU stay Treschan 2012 [23] 101 RCT Upperabdominalsurgery 6 ml/kg PBW 5 12 ml/kg PBW 5 Did not improve lung function Severgnini 2013 [24] 56 RCT Open abdominal surgery 7 ml/kg IBWb 10 9 ml/kg IBW 0 Better pulmonary function test and mCPIS score, fewer chest X-ray findings. Futier 2013 [25] 400 RCT Major abdominal surgery 6-8 ml/kg PBWb 6-8 10-12 ml/kg PBW 0 Less postoperative pulmonary and extra pulmonary complications. No: number of patients; CABG: coronary artery bypass surgery; BAL: bronchoalveolar lavage; IBW: ideal body weight; PBW: predicted body weight; RCT: randomized control trial; ICU: intensive care unit; MV: mechanical ventilation; tidal volume; mCPIS: modified Clinical Pulmonary Infection Score. a Level of PEEP set according to the sliding scale based on PaO2/FiO2 ladder. b With recruitment maneuver. To better investigate the impact of protective ventilation itself involving low VT or PEEP and recruitment maneuvers, a large RCT including 900 patients and investigating the effect on postoperative pulmonary complications of an open lung strategy with high PEEP and recruitment maneuvers in short term mechanical ventilation has recently been completed (PROVHILO) [29]. Finally, the impact of current mechanical ventilatory practice during general anesthesia on postoperative pulmonary complications will be revealed by another large prospective observational study (LAS VEGAS) [30]. In the intensive care unit In a study comparing mechanical ventilation with VT of 6 ml/kg and 12 ml/kg but with the same level of PEEP (5 cm H2O) in a surgical ICU, the low VT group had a lower, but not significantly, incidence of pulmonary infections, duration of intubation, and duration of ICU stay [31]. Pinheiro de Oliveira et al. demonstrated in trauma and general ICU patients that protective ventilation (VT 5-7 ml/kg PBW and PEEP 5 cm H2O) attenuated pulmonary IL-8 and TNF-α compared with high VT ventilation (10-12 ml/kg PBW and PEEP 5 cm H2O) after 12 hours of mechanical ventilation. Nevertheless, there were no differences in number of days on mechanical ventilation, length of ICU stay or mortality between the 2 groups [32]. Determann et al. also reported that conventional ventilation with VT ml/kg was associated with a significantly lower clearance rate of plasma IL-6 compared to protective ventilation with a VT 6 ml/kg PBW [33]. This trial was stopped early because more patients in the conventional ventilation group developed acute lung injury (ALI, 10 patients [13.5 %] vs. 2 patients [2.6 %], p = 0.01) [33]. Not only a high VT but also the time of exposure can lead to the release of pro-inflammatory mediators and an increase in the wet-to-dry ratio in the lung [34]. In a large retrospective cohort study in ICU patients who received mechanical ventilation for > 48 hours, 24 % of 332 patients developed acute lung injury (ALI) within 5 days. A VT > 6 ml/kg PBW (OR 1.3 for each ml above 6 ml/kg PBW, p < 0.001), history of blood transfusion, acidemia, and history of restrictive lung disease were independent risk factors for development of ALI [35]. The incidence of ARDS decreased from 28 % to 10 % when applying a quality improvement intervention, namely setting VT at 6-8 ml/kg PBW in patients at risk of ARDS plus using a restrictive protocol for red blood cell (RBC) transfusion [36]. Lower VT ventilation was also not associated with differences in sedative drug dosage [37]. Recent meta-analyses Serpa Neto et al. [38] performed a meta-analysis of 20 trials that compared higher and lower VT ventilation in critically ill patients and surgical patients who did not meet the consensus criteria for ARDS. Patients who received lower VT ventilation showed a decrease in the development of ATLI (risk ratio [RR] 0.33, 95 % CI 0.23-0.47, number needed to treat [NNT] 11), pulmonary infection (RR 0.45, 95 % CI 0.22-0.92, NNT 26), atelectasis (RR 0.62, 95 % CI 0.41-0.95) and mortality (RR 0.64, 95 % CI 0.46-0.86, NNT 23) [38]. However, there are some limitations that need to be addressed in the design of this meta-analysis. Some of the included studies were small, five studies were observational and studies included various types of clinical settings, such as sepsis in the ICU and one-lung ventilation in the operating room [36], [39]. Therefore, the results of this study cannot be considered as definitive. To better specify the effect of protective ventilation in cardiac and abdominal surgical patients, excluding ICU patients, Hemmes et al. [40] performed a meta-analysis focusing on the effects of protective ventilation on the incidence of postoperative pulmonary complications and included eight articles. These authors demonstrated that applying protective ventilation decreased the incidence of lung injury (RR 0.40, 95 % CI 0.22-0.70, NNT 37), pulmonary infection (RR 0.64, 95 % CI 0.43-0.97, NNT 27) and atelectasis (RR 0.67, 95 % CI 0.47-0.96, NNT 31). When comparing lower PEEP and higher PEEP, higher PEEP also attenuated postoperative lung injury (RR 0.29, 95 % CI 0.14-0.60, NNT 29), pulmonary infection (RR 0.62, 95 % CI 0.40-0.96, NNT 33) and atelectasis (RR 0.61, 95 % CI 0.41-0.91, NNT 29). The most recent systematic review was performed by Fuller et al. [41]. These authors hypothesized that low VT is associated with a decreased incidence in the progression to ARDS in patients without ARDS at the time of initiation of mechanical ventilation. Thirteen studies were included and only one was a RCT. The majority of these studies showed that low VT could decrease the progression of ARDS. However, a formal meta-analysis was not conducted because of the marked heterogeneity and variability of baseline ARDS among included patients [41]. Meta-analysis including the most recent trials From the results of two additional recently published RCTs, which included overall more than 400 patients [24], [25], we hypothesized that the use of a protective ventilator strategy, defined as physiologically low VT with moderately high PEEP with or without recruitment maneuvers, could lead to a substantial decrease in pulmonary complications in non-injured lungs and may affect mortality. Therefore, we conducted a new metaanalysis restricted to RCTs in patients undergoing surgery and critically ill patients, and excluding one-lung ventilation. Studies were identified by two authors through a computerized blind search of Pubmed using a sensitive search strategy. Articles were selected for inclusion in the systematic review if they evaluated two types of ventilation in patients without ARDS or ALI at the onset of mechanical ventilation in the operating room or ICU. Protective ventilation was defined as low VT with or without high PEEP, and standard ventilation was defined as high VT with or without low PEEP. Articles not reporting outcomes of interest were excluded. Data were independently extracted from each report by two investigators using a data recording form developed for this purpose. We extracted data regarding study design, patient characteristics, type of ventilation, and mean change in arterial blood gases, lung injury development, and ICU and hospital length of stay, overall survival, and incidence of atelectasis. The longest follow-up period in each trial up to hospital discharge was used in the analysis. After extraction, the data were reviewed and compared by a third investigator. Whenever needed, we obtained additional information about a specific study by directly questioning the principal investigator. We assessed allocation concealment, the baseline similarity of groups (with regard to age, severity of illness, and severity of lung injury), and early treatment cessation. The primary endpoint was the development of lung injury in each study group. Secondary endpoints included incidence of lung infection, atelectasis, length of ICU stay, length of hospital stay and mortality. Continuous outcome data were evaluated with a meta-analysis of risk ratio performed with a fixed-effects model according to Mantel and Haenszel. When heterogeneity was > 25 %, we performed a meta-analysis with mixed random effect using the DerSimonian and Laird method. Results were graphically represented using Forest plot graphs. The homogeneity assumption was measured by the I2, which describes the percentage of total variation across studies that is due to heterogeneity rather than to chance; a value of 0 % indicates no observed heterogeneity, and larger values show increasing heterogeneity. Parametric variables are presented as mean and standard deviation, and nonparametric variables as median and interquartile range (IQR). All analyses were conducted with OpenMetaAnalyst (version 6), Prism 6 (GraphPad software) and SPSS version 20 (IBM SPSS). For all analyses, 2-sided p values less than 0.05 were considered significant. To evaluate potential publication bias, a weighted linear regression was used, with the natural log of the OR as the dependent variable and the inverse of the total sample size as the independent variable. This is a modified Macaskill's test, which gives more balanced type I error rates in the tail probability areas in comparison to other publication bias tests [42]. Seventeen articles were included in the meta-analysis [14-20], [23-28], [31-33], [43]. Three studies were conducted in critically ill patients and the others in surgical patients. Six of the studies were in cardiac surgery, 6 in major abdominal surgery, 1 in neurosurgery, and 1 in thoracic surgery. A total of 1362 patients, comprising 682 patients with protective ventilation and 680 patients with conventional ventilation, were analyzed. Characteristics of the included RCTs are shown in Table 2. Nine studies evaluated inflammatory mediators as their primary outcome. The development of pulmonary complications was the primary outcome in three studies. The average VT values in the protective ventilation and conventional ventilation groups were 6.1 ml/kg IBW and 10.7 ml/kg, respectively. The average plateau pressures were < 20 cm H2O in both groups, significantly lower in the protective ventilation group than in the conventional ventilation group. The protective ventilation groups had higher levels of PaCO2 and more acidemia, although within the normal ranges (Table 3). Table 2 Characteristics of the studies included in the meta-analysis Protective ventilation Standard ventilation First author, Year [Ref] Number of patients VT (ml/kg) N VT (ml/kg) N Setting Design Primary outcome Lee 1990 [31] 103 6 47 12 56 ICU RCT Duration of MV Chaney 2000 [14] 25 6 12 12 16 Surg RCT Lung mechanics Wrigge 2004 [18] 62 6 30 12 32 Surg RCT Cytokines in BAL Koner 2004 [15] 44 6 15 10 29 Surg RCT Cytokines in blood Wrigge 2005 [16] 44 6 22 12 22 Surg RCT Cytokines in BAL Zupancich 2005 [17] 40 8 20 10 20 Surg RCT Cytokines in BAL Michelet 2006 [43] 52 5 26 9 26 Surg RCT Cytokines in blood Cai 2007 [27] 16 6 8 10 8 Surg RCT Atelectasis Wolthius 2008 [19] 40 6 21 12 19 Surg RCT Pulmonary Inflammation Determan 2008 [26] 40 6 21 12 19 Surg RCT Cytokines in BAL Weingarten 2010 [20] 40 6 20 10 20 Surg RCT Oxygenation Determann 2010 [33] 150 6 76 10 74 ICU RCT Cytokines in BAL Pinheiro de Oliveira 2010 [32] 20 6 10 12 10 ICU RCT Cytokines in BAL Sundar 2011 [28] 149 6 75 10 74 Surg RCT Duration of MV Treschan 2012 [23] 101 6 50 12 51 Surg RCT Spirometry Severgnini 2013 [24] 55 7 27 9 28 Surg RCT Change in mCPIS Futier 2013 [25] 400 6-8 200 10-12 200 Surg RCT Pulmonary and extrapulmonary complications BAL: bronchoalveolar lavage; ICU: intensive care unit; MV: mechanical ventilation; Surg: surgical; VT: tidal volume; mCPIS: modified Clinical Pulmonary Infection Score. Table 3 Demographic, ventilation and laboratory characteristics of the patients included in the different studies Protective ventilation (n = 682) Standard ventilation (n = 680) p Age, years 61 (8.4) 61 (7.7) 0.96 Weight, kg 77.5 (10.1) 77.2 (9.5) 0.82 Tidal volume, ml/kg 6.1 (0.63) 10.7 (1.2) 0.00 PEEP, cm H2O 7.6 (2.4) 2.5 (2.6) 0.00 Plateau pressure, cm H2O 17.2 (2.2) 19.9 (3.9) 0.03 Respiratory rate, breaths/min 16.7 (3.2) 10.1 (3.5) 0.00 PaO2/FiO2 331.6 (62.3) 332.5 (64.3) 0.94 PaCO2, mmHg 42.6 (5.5) 38.4 (4.8) 0.01 pH 7.37 (0.3) 7.40 (0) 0.01 Results are shown as mean (±SD). FiO2: fraction of inspired oxygen; PEEP: positive end-expiratory pressure. Figure 2 Effect of protective ventilation on lung injury and infection in surgical and ICU patients. Figure 3 Effect of protective ventilation on atelectasis and mortality in surgical and ICU patients. Figure 4 Effect of protective ventilation on ICU and hospital lengths of stay in surgical and ICU patients. The protective ventilation group had a lower incidence of ALI (RR 0.27, 95 % CI 0.12-0.59) and lung infection (RR 0.35, 95 % CI 0.25-0.63); however, application of protective ventilation did not affect atelectasis (RR 0.76, 95 % CI 0.33-1.37) or mortality (RR 1.03; 95 % CI 0.67-1.58) compared with conventional ventilation (Figures 2 and 3). There were no differences in length of ICU stay (weighted mean difference [WMD] -0.40, 95 % CI -1.02; 0.22) or length of hospital stay (WMD 0.13, 95 %CI -0.73; 0.08) (Figure 4) between the protective ventilation and conventional ventilation groups. The I 2 test revealed no heterogeneity in the analysis of lung injury and mortality, but there was heterogeneity in the analysis of atelectasis and length of stay. Our meta-analysis including the most recent trials suggests that among surgical and critically ill patients without lung injury, protective mechanical ventilation with use of lower VT, with or without PEEP, is associated with better clinical pulmonary outcomes in term of ARDS incidence and pulmonary infection but does not decrease atelectasis, mortality or length of stay. The plateau pressure in the conventional group was less than 20 cm H2O, indicating that ARDS can occur even below the previously-believed safe plateau pressure level. The meta-analysis by Serpa Neto et al. [38] demonstrated that mortality was significantly lower with protective ventilation than in our study. This finding can be explained by the fact that we included only RCTs in our meta-analysis and the two most recent RCTs were not analyzed in the previous study. We summarize the characteristics of each recent meta-analysis Table 4 Table 4 Characteristics and outcomes of three recent meta-analyses Author, year [ref] Serpa Neto et al. 2012 [38] Hemmes et al. 2013 [40] Our meta-analysis Number of studies 20 articles 8 articles 17 articles Number of RCTs 15 articles 6 articles 17 articles Populations ICU and surgical patients Only surgical patients ICU and surgical patients Search strategy until (year) 2012 2012 2013 Statistical analysis Fixed effect + Mantel and Haenszel Fixed effect + Mantel and Haenszel Fixed effect + Mantel and Haenszel, when P > 25 % random effect plus DerSimonian and Laird Number of patients 2833 1669 1362 PV group CV group PV group CV group PV group CV group VT (ml/kg) 6.5 10.6 6.1 10.4 6.1 10.7 PEEP (cm H2O) 6.4 3.4 6.6 2.7 7.6 2.5 Plateau pressure (cmH2O) 16.6 21.4 16.6 20.5 17.2 19.9 Main outcome ALI RR 0.33; 95 %CI 0.23-0.47 RR 0.40; 95 % CI 0.22-0.70 RR 0.27; 95 % CI 0.12-0.59 Pulmonary infection RR 0.52; 95 %CI 0.33-0.82 RR 0.64; 95 % CI 0.43-0.97 RR 0.35; 95 % CI 0.25-0.63 Atelectasis RR 0.62; 95 %CI 0.41-0.95 RR 0.67; 95 % CI 0.47-0.96 RR 0.76; 95 % CI 0.33-1.37 Mortality RR 0.64; 95 %CI 0.46-0.86 No data RR 1.03; 95 % CI 0.67-1.58 ICU length of stay No data No data WMD -0.40; 95 %CI -1.02; 0.22 Hospital length of stay No data No data WMD 0.13; 95 %CI -0.73; 0.08 Homogeneity test Found heterogeneity in pulmonary infection outcome Found heterogeneity in atelectasis outcome Found heterogeneity in atelectasis, ICU length of stay and hospital length of stay outcome RCT: randomized control trial; VT: tidal volume; PEEP: positive end-expiratory pressure; PV: protective ventilation; CV: conventional ventilation; ICU: intensive care unit; RR: risk ratio; 95 % CI: 95 % confidence interval. WMD: weighted mean difference. In specific populations Donors A prospective multicenter study in brain death patients reported that 45 % of potential lung donors have a PaO2/ FiO2 < 300, making them ineligible for lung donation. The authors suggest that mechanical ventilation management should be changed to protective ventilation settings to improve the supply of donor lungs [44]. Mascia et al. compared a protective mechanical ventilation strategy, including VT of 6-8 ml/kg PBW, PEEP of 8-10 cm H2O, apnea tests performed by using continuous positive airway pressure (CPAP), closed circuit for airway suction and recruitment maneuver performed after each ventilator disconnection, with conventional ventilation, mely VT of 10-12 ml/kg PBW, PEEP 3-5 cm H2O, apnea test performed by disconnecting the ventilator and open circuit airway suctioning, in potential donors. The authors clearly demonstrated that the number of lungs that met lung donor eligibility criteria after the 6-hour observation period and the number of lungs eligible to be harvested were nearly two times higher with protective ventilation compared to traditional mechanical ventilation [45]. The authors concluded that these strategies can prevent the lungs from ARDS caused by brain injury and can recruit atelectasis. One-lung ventilation Michelet et al. demonstrated that during one-lung ventilation, protective ventilation resulted in higher PaO2/FiO2 ratios and shortened duration of postoperative mechanical ventilation in patients undergoing esophagectomy compared to conventional ventilation [43]. In patients undergoing esophagectomy, protective ventilation during one-lung ventilation causes lower serum levels of IL-1, IL-6, and IL-8 [43], [46]. In lobectomy patients, during one lung ventilation, Yang et al. reported that applying VT of 6 ml/kg PBW, PEEP 5 cm H2O and FiO2 0.5 decreased the incidence of pulmonary complications and improved oxygenation indices compared to conventional ventilation [47]. Obesity Obesity can aggravate atelectasis formation and is one of the risk factors for receiving high VT values [21]. In morbid obesity, the forced vital capacity, maximal voluntary ventilation and expiratory reserve volume are markedly reduced. During anesthesia, an increase in body mass index correlates well with decreasing lung volume, lung compliance and oxygenation [48] but increasing lung resistance. The decrease of FRC is linked with atelectasis formation consequent to hypoxemia [49]. Ventilator management during anesthesia in obesity should be set as follows: (a) low VT; (b) open lung approach with PEEP and recruitment maneuvers; (c) low FiO2, less than 0.8 [49]. Because of the effects of chest wall and intra-abdominal pressure, we recommend careful monitoring of airway plateau pressure, intrinsic PEEP and transpulmonary pressure. Further studies are warranted to define protective ventilation settings in this group and particularly during the perioperative period. Conclusions Although, mechanical ventilation is a supportive tool in patients with respiratory failure and during the perioperative period, it has proved to be a double-edged sword. Mechanisms of VILI are now better understood. Implementation of protective ventilator strategies, consisting of VT of 6 ml/kg, PEEP of 6-12 cm H2O and recruitment maneuvers can decrease the development of ARDS, pulmonary infection and atelectasis but not mortality in previously non-injured lungs in the perioperative period and the ICU. List of abbreviations used ABW: actual body weight; ALI: acute lung injury; ARDS: acute respiratory distress syndrome; BAL: bronchoalveolar lavage; CABG: coronary artery bypass surgery; CI: confidence interval; CPB: cardiopulmonary bypass; CV: conventional ventilation; ECM: extracellular matrix; EELV: end-expiratory lung volume; FRC: functional residual capacity; GAGs: glycosaminoglycans; IBW: ideal body weight; ICU: intensive care unit; IL: interleukin; mCPIS: modified Clinical Pulmonary Infection Score; MMP: matrix metalloproteinase; MV: mechanical ventilation; NF-KB: nuclear factor-kappa B; NNT: number needed to treat; OR: odds ratio; PBW: predicted body weight; PEEP: positive-end expiratory pressure; PV: protective ventilation; RBC: red blood cell; RCTs: randomized controlled trials; RR: risk ratio; RV: right ventricular; TNF: tumor necrosis factor; VILI@ ventilator-induced lung injury; V- tidal volume; WMD: weighted mean difference; ZEEP: zero end-expiratory pressure. Competing interests The authors declare that they have no competing interests.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of mortality over time in patients receiving mechanical ventilation.

          Baseline characteristics and management have changed over time in patients requiring mechanical ventilation; however, the impact of these changes on patient outcomes is unclear. To estimate whether mortality in mechanically ventilated patients has changed over time. Prospective cohort studies conducted in 1998, 2004, and 2010, including patients receiving mechanical ventilation for more than 12 hours in a 1-month period, from 927 units in 40 countries. To examine effects over time on mortality in intensive care units, we performed generalized estimating equation models. We included 18,302 patients. The reasons for initiating mechanical ventilation varied significantly among cohorts. Ventilatory management changed over time (P < 0.001), with increased use of noninvasive positive-pressure ventilation (5% in 1998 to 14% in 2010), a decrease in tidal volume (mean 8.8 ml/kg actual body weight [SD = 2.1] in 1998 to 6.9 ml/kg [SD = 1.9] in 2010), and an increase in applied positive end-expiratory pressure (mean 4.2 cm H2O [SD = 3.8] in 1998 to 7.0 cm of H2O [SD = 3.0] in 2010). Crude mortality in the intensive care unit decreased in 2010 compared with 1998 (28 versus 31%; odds ratio, 0.87; 95% confidence interval, 0.80-0.94), despite a similar complication rate. Hospital mortality decreased similarly. After adjusting for baseline and management variables, this difference remained significant (odds ratio, 0.78; 95% confidence interval, 0.67-0.92). Patient characteristics and ventilation practices have changed over time, and outcomes of mechanically ventilated patients have improved. Clinical trials registered with www.clinicaltrials.gov (NCT01093482).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis.

            Lung-protective mechanical ventilation with the use of lower tidal volumes has been found to improve outcomes of patients with acute respiratory distress syndrome (ARDS). It has been suggested that use of lower tidal volumes also benefits patients who do not have ARDS. To determine whether use of lower tidal volumes is associated with improved outcomes of patients receiving ventilation who do not have ARDS. MEDLINE, CINAHL, Web of Science, and Cochrane Central Register of Controlled Trials up to August 2012. Eligible studies evaluated use of lower vs higher tidal volumes in patients without ARDS at onset of mechanical ventilation and reported lung injury development, overall mortality, pulmonary infection, atelectasis, and biochemical alterations. Three reviewers extracted data on study characteristics, methods, and outcomes. Disagreement was resolved by consensus. Twenty articles (2822 participants) were included. Meta-analysis using a fixed-effects model showed a decrease in lung injury development (risk ratio [RR], 0.33; 95% CI, 0.23 to 0.47; I2, 0%; number needed to treat [NNT], 11), and mortality (RR, 0.64; 95% CI, 0.46 to 0.89; I2, 0%; NNT, 23) in patients receiving ventilation with lower tidal volumes. The results of lung injury development were similar when stratified by the type of study (randomized vs nonrandomized) and were significant only in randomized trials for pulmonary infection and only in nonrandomized trials for mortality. Meta-analysis using a random-effects model showed, in protective ventilation groups, a lower incidence of pulmonary infection (RR, 0.45; 95% CI, 0.22 to 0.92; I2, 32%; NNT, 26), lower mean (SD) hospital length of stay (6.91 [2.36] vs 8.87 [2.93] days, respectively; standardized mean difference [SMD], 0.51; 95% CI, 0.20 to 0.82; I2, 75%), higher mean (SD) PaCO2 levels (41.05 [3.79] vs 37.90 [4.19] mm Hg, respectively; SMD, -0.51; 95% CI, -0.70 to -0.32; I2, 54%), and lower mean (SD) pH values (7.37 [0.03] vs 7.40 [0.04], respectively; SMD, 1.16; 95% CI, 0.31 to 2.02; I2, 96%) but similar mean (SD) ratios of PaO2 to fraction of inspired oxygen (304.40 [65.7] vs 312.97 [68.13], respectively; SMD, 0.11; 95% CI, -0.06 to 0.27; I2, 60%). Tidal volume gradients between the 2 groups did not influence significantly the final results. Among patients without ARDS, protective ventilation with lower tidal volumes was associated with better clinical outcomes. Some of the limitations of the meta-analysis were the mixed setting of mechanical ventilation (intensive care unit or operating room) and the duration of mechanical ventilation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation.

              Although ventilation with small tidal volumes is recommended in patients with established acute lung injury, most others receive highly variable tidal volume aimed in part at normalizing arterial blood gas values. We tested the hypothesis that acute lung injury, which develops after the initiation of mechanical ventilation, is associated with known risk factors for ventilator-induced lung injury such as ventilation with large tidal volume. Retrospective cohort study. Four intensive care units in a tertiary referral center. Patients who received invasive mechanical ventilation for > or = 48 hrs between January and December 2001. None. The main outcome of interest, acute lung injury, was assessed by independent review of daily digital chest radiographs and arterial blood gases. Ventilator settings, hemodynamics, and acute lung injury risk factors were extracted from the Acute Physiology and Chronic Health Evaluation III database and the patients' medical records. Of 332 patients who did not have acute lung injury from the outset, 80 patients (24%) developed acute lung injury within the first 5 days of mechanical ventilation. When expressed per predicted body weight, women were ventilated with larger tidal volume than men (mean 11.4 vs. 10.4 mL/kg predicted body weight, p <.001) and tended to develop acute lung injury more often (29% vs. 20%, p =.068). In a multivariate analysis, the main risk factors associated with the development of acute lung injury were the use of large tidal volume (odds ratio 1.3 for each mL above 6 mL/kg predicted body weight, p <.001), transfusion of blood products (odds ratio, 3.0; p < 0.001), acidemia (pH < 7.35; odds ratio, 2.0; p =.032) and a history of restrictive lung disease (odds ratio, 3.6; p =.044). The association between the initial tidal volume and the development of acute lung injury suggests that ventilator-associated lung injury may be an important cause of this syndrome. Height and gender should be considered when setting up the ventilator. Strong consideration should be given to limiting large tidal volume, not only in patients with established acute lung injury but also in patients at risk for acute lung injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Crit Care
                Crit Care
                Critical Care
                BioMed Central
                1364-8535
                1466-609X
                2014
                18 March 2014
                : 18
                : 2
                : 211
                Affiliations
                [1 ]Division of Pulmonary and Critical Care Unit, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
                [2 ]Department of Neuroscience and Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
                [3 ]AOU IRCCS San Martino-IST, Department of Surgical Sciences and Integratec Diagnostics, University of Genoa, Genoa, Italy
                Article
                cc13778
                10.1186/cc13778
                4056601
                24762100
                467ebe55-81f0-4edf-8604-26d2761fab5d
                Copyright © 2014 Sutherasan et al., licensee Springer-Verlag Berlin Heidelberg and BioMed Central

                This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2014 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2014. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901.

                History
                Categories
                Review

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article