32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Emerging Field of Human Social Genomics

      1 , 1 , 2

      Clinical Psychological Science

      SAGE Publications

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although we generally experience our bodies as being biologically stable across time and situations, an emerging field of research is demonstrating that external social conditions, especially our subjective perceptions of those conditions, can influence our most basic internal biological processes-namely, the expression of our genes. This research on human social genomics has begun to identify the types of genes that are subject to social-environmental regulation, the neural and molecular mechanisms that mediate the effects of social processes on gene expression, and the genetic polymorphisms that moderate individual differences in genomic sensitivity to social context. The molecular models resulting from this research provide new opportunities for understanding how social and genetic factors interact to shape complex behavioral phenotypes and susceptibility to disease. This research also sheds new light on the evolution of the human genome and challenges the fundamental belief that our molecular makeup is relatively stable and impermeable to social-environmental influence.

          Related collections

          Most cited references 95

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming by maternal behavior.

          Here we report that increased pup licking and grooming (LG) and arched-back nursing (ABN) by rat mothers altered the offspring epigenome at a glucocorticoid receptor (GR) gene promoter in the hippocampus. Offspring of mothers that showed high levels of LG and ABN were found to have differences in DNA methylation, as compared to offspring of 'low-LG-ABN' mothers. These differences emerged over the first week of life, were reversed with cross-fostering, persisted into adulthood and were associated with altered histone acetylation and transcription factor (NGFI-A) binding to the GR promoter. Central infusion of a histone deacetylase inhibitor removed the group differences in histone acetylation, DNA methylation, NGFI-A binding, GR expression and hypothalamic-pituitary-adrenal (HPA) responses to stress, suggesting a causal relation among epigenomic state, GR expression and the maternal effect on stress responses in the offspring. Thus we show that an epigenomic state of a gene can be established through behavioral programming, and it is potentially reversible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress.

            Mice experiencing repeated aggression develop a long-lasting aversion to social contact, which can be normalized by chronic, but not acute, administration of antidepressant. Using viral-mediated, mesolimbic dopamine pathway-specific knockdown of brain-derived neurotrophic factor (BDNF), we showed that BDNF is required for the development of this experience-dependent social aversion. Gene profiling in the nucleus accumbens indicates that local knockdown of BDNF obliterates most of the effects of repeated aggression on gene expression within this circuit, with similar effects being produced by chronic treatment with antidepressant. These results establish an essential role for BDNF in mediating long-term neural and behavioral plasticity in response to aversive social experiences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease.

              The brain is the key organ of stress reactivity, coping, and recovery processes. Within the brain, a distributed neural circuitry determines what is threatening and thus stressful to the individual. Instrumental brain systems of this circuitry include the hippocampus, amygdala, and areas of the prefrontal cortex. Together, these systems regulate physiological and behavioral stress processes, which can be adaptive in the short-term and maladaptive in the long-term. Importantly, such stress processes arise from bidirectional patterns of communication between the brain and the autonomic, cardiovascular, and immune systems via neural and endocrine mechanisms underpinning cognition, experience, and behavior. In one respect, these bidirectional stress mechanisms are protective in that they promote short-term adaptation (allostasis). In another respect, however, these stress mechanisms can lead to a long-term dysregulation of allostasis in that they promote maladaptive wear-and-tear on the body and brain under chronically stressful conditions (allostatic load), compromising stress resiliency and health. This review focuses specifically on the links between stress-related processes embedded within the social environment and embodied within the brain, which is viewed as the central mediator and target of allostasis and allostatic load.
                Bookmark

                Author and article information

                Journal
                Clinical Psychological Science
                Clinical Psychological Science
                SAGE Publications
                2167-7026
                2167-7034
                February 15 2013
                July 2013
                March 05 2013
                July 2013
                : 1
                : 3
                : 331-348
                Affiliations
                [1 ]Cousins Center for Psychoneuroimmunology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
                [2 ]Department of Medicine, Division of Hematology-Oncology, UCLA Molecular Biology Institute, Jonsson Comprehensive Cancer Center, and UCLA AIDS Institute, University of California, Los Angeles
                Article
                10.1177/2167702613478594
                3707393
                23853742
                © 2013

                Comments

                Comment on this article