11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy : a randomized sham-controlled comparative study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          No study has directly compared the effectiveness of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS) in neuropathic pain (NP). In this 2-centre randomised double-blind sham-controlled study, we compared the efficacy of 10-Hz rTMS and anodal 2-mA tDCS of the motor cortex and sham stimulation contralateral to the painful area (3 daily sessions) in patients with NP due to lumbosacral radiculopathy. Average pain intensity (primary outcome) was evaluated after each session and 5 days later. Secondary outcomes included neuropathic symptoms and thermal pain thresholds for the upper limbs. We used an innovative design that minimised bias by randomly assigning patients to 1 of 2 groups: active rTMS and tDCS or sham rTMS and tDCS. For each treatment group (active or sham), the order of the sessions was again randomised according to a crossover design. In total, 51 patients were screened and 35 (51% women) were randomized. Active rTMS was superior to tDCS and sham in pain intensity (F = 2.89 and P = 0.023). Transcranial direct-current stimulation was not superior to sham, but its analgesic effects were correlated to that of rTMS (P = 0.046), suggesting common mechanisms of action. Repetitive transcranial magnetic stimulation lowered cold pain thresholds (P = 0.04) and its effect on cold pain was correlated with its analgesic efficacy (P = 0.006). However, rTMS had no impact on individual neuropathic symptoms. Thus, rTMS is more effective than tDCS and sham in patients with NP due to lumbosacral radiculopathy and may modulate the sensory and affective dimensions of pain.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury.

          Past evidence has shown that motor cortical stimulation with invasive and non-invasive brain stimulation is effective to relieve central pain. Here we aimed to study the effects of another, very safe technique of non-invasive brain stimulation--transcranial direct current stimulation (tDCS)--on pain control in patients with central pain due to traumatic spinal cord injury. Patients were randomized to receive sham or active motor tDCS (2mA, 20 min for 5 consecutive days). A blinded evaluator rated the pain using the visual analogue scale for pain, Clinician Global Impression and Patient Global Assessment. Safety was assessed with a neuropsychological battery and confounders with the evaluation of depression and anxiety changes. There was a significant pain improvement after active anodal stimulation of the motor cortex, but not after sham stimulation. These results were not confounded by depression or anxiety changes. Furthermore, cognitive performance was not significantly changed throughout the trial in both treatment groups. The results of our study suggest that this new approach of cortical stimulation can be effective to control pain in patients with spinal cord lesion. We discuss potential mechanisms for pain amelioration after tDCS, such as a secondary modulation of thalamic nuclei activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits.

            Recent studies indicate that the cortical effects of transcranial magnetic stimulation (TMS) may not be localized to the site of stimulation, but spread to other distant areas. Using echo-planar imaging with blood-oxygenation-level-dependent (BOLD) contrast at 3 Tesla, we measured MRI signal changes in cortical and subcortical motor regions during high-frequency (3.125 Hz) repetitive TMS (rTMS) of the left sensorimotor cortex (M1/S1) at intensities above and below the active motor threshold in healthy humans. The supra- and subthreshold nature of the TMS pulses was confirmed by simultaneous electromyographic monitoring of a hand muscle. Suprathreshold rTMS activated a network of primary and secondary cortical motor regions including M1/S1, supplementary motor area, dorsal premotor cortex, cingulate motor area, the putamen and thalamus. Subthreshold rTMS elicited no MRI-detectable activity in the stimulated M1/S1, but otherwise led to a similar activation pattern as obtained for suprathreshold stimulation though at reduced intensity. In addition, we observed activations within the auditory system, including the transverse and superior temporal gyrus, inferior colliculus and medial geniculate nucleus. The present findings support the notion that re-afferent feedback from evoked movements represents the dominant input to the motor system via M1 during suprathreshold stimulation. The BOLD MRI changes in motor areas distant from the site of subthreshold stimulation are likely to originate from altered synaptic transmissions due to induced excitability changes in M1/S1. They reflect the capability of rTMS to target both local and remote brain regions as tightly connected constituents of a cortical and subcortical network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Motor cortex rTMS restores defective intracortical inhibition in chronic neuropathic pain.

              To assess cortical excitability changes in patients with chronic neuropathic pain at baseline and after repetitive transcranial magnetic stimulation (rTMS) of the motor cortex. In 22 patients with unilateral hand pain of various neurologic origins and 22 age-matched healthy controls, we studied the following parameters of cortical excitability: motor threshold at rest, motor evoked potential amplitude ratio at two intensities, cortical silent period (CSP), and intracortical inhibition (ICI) and intracortical facilitation. We compared these parameters between healthy subjects and patients at baseline. We also studied excitability changes in the motor cortex corresponding to the painful hand of patients after active or sham rTMS of this cortical region at 1 or 10 Hz. At baseline, CSP was shortened for the both hemispheres of patients vs healthy subjects, in correlation with pain score, while ICI was reduced only for the motor cortex corresponding to the painful hand. Regarding rTMS effects, the single significant change was ICI increase in the motor cortex corresponding to the painful hand, after active 10-Hz rTMS, in correlation with pain relief. Chronic neuropathic pain was associated with motor cortex disinhibition, suggesting impaired GABAergic neurotransmission related to some aspects of pain or to underlying sensory or motor disturbances. The analgesic effects produced by motor cortex stimulation could result, at least partly, from the restoration of defective intracortical inhibitory processes.
                Bookmark

                Author and article information

                Journal
                PAIN
                PAIN
                Ovid Technologies (Wolters Kluwer Health)
                0304-3959
                2016
                June 2016
                : 157
                : 6
                : 1224-1231
                Article
                10.1097/j.pain.0000000000000510
                26845524
                468ea598-da1a-464e-962d-091f78deeba2
                © 2016
                History

                Comments

                Comment on this article