73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemical Rescue of Malaria Parasites Lacking an Apicoplast Defines Organelle Function in Blood-Stage Plasmodium falciparum

      research-article
      1 , * , 2 , 3 , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The only essential function of a unique plastid organelle, the apicoplast, in blood-stage P. falciparum is the production of isoprenoid precursors.

          Abstract

          Plasmodium spp parasites harbor an unusual plastid organelle called the apicoplast. Due to its prokaryotic origin and essential function, the apicoplast is a key target for development of new anti-malarials. Over 500 proteins are predicted to localize to this organelle and several prokaryotic biochemical pathways have been annotated, yet the essential role of the apicoplast during human infection remains a mystery. Previous work showed that treatment with fosmidomycin, an inhibitor of non-mevalonate isoprenoid precursor biosynthesis in the apicoplast, inhibits the growth of blood-stage P. falciparum. Herein, we demonstrate that fosmidomycin inhibition can be chemically rescued by supplementation with isopentenyl pyrophosphate (IPP), the pathway product. Surprisingly, IPP supplementation also completely reverses death following treatment with antibiotics that cause loss of the apicoplast. We show that antibiotic-treated parasites rescued with IPP over multiple cycles specifically lose their apicoplast genome and fail to process or localize organelle proteins, rendering them functionally apicoplast-minus. Despite the loss of this essential organelle, these apicoplast-minus auxotrophs can be grown indefinitely in asexual blood stage culture but are entirely dependent on exogenous IPP for survival. These findings indicate that isoprenoid precursor biosynthesis is the only essential function of the apicoplast during blood-stage growth. Moreover, apicoplast-minus P. falciparum strains will be a powerful tool for further investigation of apicoplast biology as well as drug and vaccine development.

          Author Summary

          Malaria caused by Plasmodium spp parasites is a profound human health problem that has shaped our evolutionary past and continues to influence modern day with a disease burden that disproportionately affects the world's poorest and youngest. New anti-malarials are desperately needed in the face of existing or emerging drug resistance to available therapies, while an effective vaccine remains elusive. A plastid organelle, the apicoplast, has been hailed as Plasmodium's “Achilles' heel” because it contains bacteria-derived pathways that have no counterpart in the human host and therefore may be ideal drug targets. However, more than a decade after its discovery, the essential functions of the apicoplast remain a mystery, and without a specific pathway or function to target, development of drugs against the apicoplast has been stymied. In this study, we use a simple chemical method to generate parasites that have lost their apicoplast, normally a deadly event, but which survive—“rescued” by the addition of an essential metabolite to the culture. This chemical rescue demonstrates that the apicoplast serves only a single essential function, namely isoprenoid precursor biosynthesis during blood-stage growth, validating this metabolic function as a viable drug target. Moreover, the apicoplast-minus Plasmodium strains generated in this study will be a powerful tool for identifying apicoplast-targeted drugs and as a potential vaccine strain with significant advantages over current vaccine technologies.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Book: not found

          Medicinal Natural Products

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Type II fatty acid synthesis is essential only for malaria parasite late liver stage development

            Intracellular malaria parasites require lipids for growth and replication. They possess a prokaryotic type II fatty acid synthesis (FAS II) pathway that localizes to the apicoplast plastid organelle and is assumed to be necessary for pathogenic blood stage replication. However, the importance of FAS II throughout the complex parasite life cycle remains unknown. We show in a rodent malaria model that FAS II enzymes localize to the sporozoite and liver stage apicoplast. Targeted deletion of FabB/F, a critical enzyme in fatty acid synthesis, did not affect parasite blood stage replication, mosquito stage development and initial infection in the liver. This was confirmed by knockout of FabZ, another critical FAS II enzyme. However, FAS II-deficient Plasmodium yoelii liver stages failed to form exo-erythrocytic merozoites, the invasive stage that first initiates blood stage infection. Furthermore, deletion of FabI in the human malaria parasite Plasmodium falciparum did not show a reduction in asexual blood stage replication in vitro. Malaria parasites therefore depend on the intrinsic FAS II pathway only at one specific life cycle transition point, from liver to blood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A plastid of probable green algal origin in Apicomplexan parasites.

              Protozoan parasites of the phylum Apicomplexa contain three genetic elements: the nuclear and mitochondrial genomes characteristic of virtually all eukaryotic cells and a 35-kilobase circular extrachromosomal DNA. In situ hybridization techniques were used to localize the 35-kilobase DNA of Toxoplasma gondii to a discrete organelle surrounded by four membranes. Phylogenetic analysis of the tufA gene encoded by the 35-kilobase genomes of coccidians T. gondii and Eimeria tenella and the malaria parasite Plasmodium falciparum grouped this organellar genome with cyanobacteria and plastids, showing consistent clustering with green algal plastids. Taken together, these observations indicate that the Apicomplexa acquired a plastid by secondary endosymbiosis, probably from a green alga.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2011
                August 2011
                30 August 2011
                : 9
                : 8
                : e1001138
                Affiliations
                [1 ]Department of Pathology, Stanford Medical School, Stanford, California, United States of America
                [2 ]Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
                [3 ]Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
                University of Georgia, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: EY JD. Performed the experiments: EY. Analyzed the data: EY JD. Wrote the paper: EY JD.

                Article
                PBIOLOGY-D-11-01871
                10.1371/journal.pbio.1001138
                3166167
                21912516
                4693b503-fb77-4b47-8e33-f3ae591004f8
                Yeh, DeRisi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 May 2011
                : 22 July 2011
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Biochemistry
                Microbiology
                Molecular Cell Biology
                Chemistry
                Chemical Biology
                Medicine
                Infectious Diseases

                Life sciences
                Life sciences

                Comments

                Comment on this article