126
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Our previous studies indicated that while 20 nm particles are rapidly cleared from the periocular space of the rat following posterior subconjunctival injection, 200 nm particles persisted for at least two months. To understand faster clearance of 20 nm particles, the purpose of this study was to determine transscleral permeability and in vivo disposition in the presence and absence of circulation. Further, it was the purpose of this study to simulate sustained retinal drug delivery after periocular administration of rapidly cleared and slowly cleared nanoparticles.

          Methods

          The permeability of 20 and 200 nm particles over 24 h was examined across isolated bovine sclera and sclera-choroid-RPE with or without a surfactant (Tween 20, 0.1% w/v) added to the preparation. The in vivo disposition of nanoparticles was performed using Sprague Dawley rats. The rats, either dead or alive, were administered with 400 µg of the nanoparticles in the periocular space, and the particle disposition in the eye tissues was assessed 6 h later. To evaluate the role of the reticulo-endothelial system and lymphatic circulation, isolated liver, spleen, and cervical, axillary, and mesenteric lymph nodes were analyzed using confocal microscopy. Mathematical simulations with Berkeley Madonna were used to evaluate the effect of nanoparticle size on retinal drug levels following periocular administration. Celecoxib was used as the model drug and the finalized pharmacokinetic model from a previous study was used with some modifications for the simulation.

          Results

          Transport of 20 nm particles across sclera in the presence and absence of the surfactant were 0.1%±0.07% and 0.46%±0.06%, respectively. These particles did not permeate across the sclera-choroid-RPE in 24 h. There was no quantifiable transport for 200 nm particles across the sclera or the sclera-choroid-RPE. In live animals, the 20 nm particles were undetectable in any of the ocular tissues except in the sclera-choroid following periocular administration; however, in dead animals, the particle concentrations in the sclera-choroid were 19 fold higher than those in live animals, and particles were detectable in the retina as well as vitreous. The retention of 20 nm particles at the site of administration was two fold higher in the dead animals. In live animals, the particles were clearly detectable in the spleen and to a very low extent in the liver as well. The particles were also detected in the cervical, axillary, and mesenteric lymph nodes of the live animals. Simulations with two particles (20 nm and 200 nm) with different clearance rates demonstrated that the retinal drug levels were affected by particle clearance. Larger nanoparticles sustained retinal drug delivery better than smaller nanoparticles. With an increase in drug release rate from the particles, these differences diminish.

          Conclusions

          The 20 nm particles are transported across the sclera to a minor degree; however, there is no significant transport across the sclera-choroid-RPE. Periocular circulation (blood and lymphatic) plays an important role in the clearance of the 20 nm particles. The higher particle levels in the ocular tissues in the post-mortem studies indicate a dynamic physiologic barrier to the entry of particles into the ocular tissues after periocular administration. The particle size of the delivery system can play an important role in the observed retinal drug levels after periocular administration. Slow release nanoparticles with low clearance by blood and lymphatic circulations are suitable for prolonged transscleral drug delivery to the back of the eye.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Biodegradable nanoparticles for cytosolic delivery of therapeutics.

          Many therapeutics require efficient cytosolic delivery either because the receptors for those drugs are located in the cytosol or their site of action is an intracellular organelle that requires transport through the cytosolic compartment. To achieve efficient cytosolic delivery of therapeutics, different nanomaterials have been developed that consider the diverse physicochemical nature of therapeutics (macromolecule to small molecule; water soluble to water insoluble) and various membrane associated and intracellular barriers that these systems need to overcome to efficiently deliver and retain therapeutics in the cytoplasmic compartment. Our interest is in investigating PLGA and PLA-based nanoparticles for intracellular delivery of drugs and genes. The present review discusses the various aspects of our studies and emphasizes the need for understanding of the molecular mechanisms of intracellular trafficking of nanoparticles in order to develop an efficient cytosolic delivery system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles.

            To study the kinetics of polylactide (PLA) nanoparticle (NP) localization within the intraocular tissues and to evaluate their potential to release encapsulated material. A single intravitreous injection (5 micro L) of an NP suspension (2.2 mg/mL) encapsulating either Rh-6G (Rh) or Nile red (Nr) was performed. Animals were killed at various times, and the NPs localization within the intraocular tissues was studied by environmental scanning electron microscopy (ESEM), confocal microscopy, light microscopy histology, fluorescence microscopy, and immunohistochemistry. Eyes injected with blank NPs, free Rh, or PBS solution were used as the control. ESEM showed the flow of the NPs from the site of injection into the vitreous cavity and their rapid settling on the internal limiting membrane. Histology demonstrated the anatomic integrity of the injected eyes and showed no toxic effects. A mild inflammatory cell infiltrate was observed in the ciliary body 6 hours after the injection and in the posterior vitreous and retina at 18 to 24 hours. The intensity of inflammation decreased markedly by 48 hours. Confocal and fluorescence microscopy and immunohistochemistry showed that a transretinal movement of the NPs was gradually taking place with a later localization in the RPE cells. Rh encapsulated within the injected NPs diffused and stained the retina and RPE cells. PLA NPs were still present within the RPE cells 4 months after a single intravitreous injection. Intravitreous injection of PLA NPs appears to result in transretinal movement, with a preferential localization in the RPE cells. Encapsulated Rh diffuses from the NPs and stains the neuroretina and the RPE cells. The findings support the idea that specific targeting of these tissues is feasible. Furthermore, the presence of the NPs within the RPE cells 4 months after a single injection shows that a steady and continuous delivery of drugs can be achieved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Drug delivery systems for vitreoretinal diseases.

              The eye has an environment that is specific unto itself in terms of pharmacokinetics: the inner and outer blood-retinal barriers separate the retina and the vitreous from the systemic circulation and vitreous body, which physiologically has no cellular components, occupies the vitreous cavity, an inner space of the eye, and reduces practical convection of molecules. Considering this, development of a drug delivery system (DDS) is becoming increasingly important in the treatment of vitreoretinal diseases not only to facilitate drug efficacy but also to attenuate adverse effects. The DDS has three major goals: enhances drug permeation (e.g., iontophoresis and transscleral DDS), controls release of drugs (e.g., microspheres, liposomes, and intraocular implants), and targets drugs (e.g., prodrugs with high molecular weight and immunoconjugates). Comprehensive knowledge of these should lead to development of innovative treatment modalities.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2008
                29 January 2008
                : 14
                : 150-160
                Affiliations
                [1 ]Department of Pharmaceutical Sciences and
                [2 ]Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5840
                [3 ]Emory Eye Center, Emory University, Atlanta, GA.
                Author notes
                Correspondence to: Uday B. Kompella, PhD, 985840 Nebraska Medical Center, Omaha, NE 68198-5840; Phone: (402) 559-2974; FAX: (402) 559-5368; email: ukompell@unmc.edu. (Mr. Aniruddha C Amrite is now at Quintiles Inc., Overland Park, KS.)
                Article
                20 2007MOLVIS0299
                2254958
                18334929
                469fd473-3843-4aae-a970-3f133f7c2a46
                Copyright © 2008 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 September 2007
                : 11 January 2008
                Categories
                Research Article
                Custom metadata
                Export to XML
                two-thirds
                two-thirds

                Vision sciences
                Vision sciences

                Comments

                Comment on this article