3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of an oligonucleotide microarray for simultaneous detection of two canine MDR1 genotypes and association between genotypes and chemotherapy side effects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Canine MDR1 gene mutations produce translated P-glycoprotein, an active drug efflux transporter, resulting in dysfunction or over-expression. The 4-base deletion at exon 4 of MDR1 at nucleotide position 230 (nt230[del4]) in exon 4 makes P-glycoprotein lose function, leading to drug accumulation and toxicity. The G allele of the c.-6-180T>G variation in intron 1 of MDR1 (single nucleotide polymorphism [SNP] 180) causes P-glycoprotein over-expression, making epileptic dogs resistant to phenobarbital treatment. Both of these mutations are reported to be common in collies. This study develops a more efficient method to detect these two mutations simultaneously, and clarifies the genotype association with the side effects of chemotherapy. Genotype distribution in Taiwan was also investigated. An oligonucleotide microarray was successfully developed for the detection of both genotypes and was applied to clinical samples. No 4-base deletion mutant allele was detected in dogs in Taiwan. However, the G allele variation of SNP 180 was spread across all dog breeds, not only in collies. The chemotherapy adverse effect percentages of the SNP 180 T/T, T/G, and G/G genotypes were 16.7%, 6.3%, and 0%, respectively. This study describes an efficient way for MDR1 gene mutation detection, clarifying genotype distribution, and the association with chemotherapy.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene.

          A subpopulation of collie dogs is extremely sensitive to neurotoxicity induced by ivermectin. The aim of this study was to determine the mechanistic basis for this phenomenon. The multi-drug-resistance gene (mdr1) encodes a large transmembrane protein, P-glycoprotein (P-gp), that is an integral part of the blood-brain barrier. P-gp functions as a drug-transport pump at the blood-brain barrier, transporting a variety of drugs from the brain back into the blood. Since ivermectin is a substrate for P-gp, we hypothesized that ivermectin-sensitive collies had altered mdr1 expression compared with unaffected collies. We report a deletion mutation of the mdr1 gene that is associated with ivermectin sensitivity. The 4-bp deletion results in a frame shift, generating several stop codons that prematurely terminate P-gp synthesis. Dogs that are homozygous for the deletion mutation display the ivermectin-sensitive phenotype, while those that are homozygous normal or heterozygous do not display increased sensitivity to ivermectin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P-glycoprotein ABCB1: a major player in drug handling by mammals.

            Mammalian P-glycoproteins are active drug efflux transporters located in the plasma membrane. In the early nineties, we generated knockouts of the three P-glycoprotein genes of mice, the Mdr1a, Mdr1b, and Mdr2 P-glycoproteins, now known as Abcb1a, Abcb1b, and Abcb4, respectively. In the JCI papers that are the subject of this Hindsight, we showed that loss of Mdr1a (Abcb1a) had a profound effect on the tissue distribution and especially the brain accumulation of a range of drugs frequently used in humans, including dexamethasone, digoxin, cyclosporin A, ondansetron, domperidone, and loperamide. All drugs were shown to be excellent substrates of the murine ABCB1A P-glycoprotein and its human counterpart, the MDR1 P-glycoprotein, ABCB1. We found that the ability of ABCB1 to prevent accumulation of some drugs in the brain is a prerequisite for their clinical use, as absence of the transporter led to severe toxicity or undesired CNS pharmacodynamic effects. Subsequent work has fully confirmed the profound effect of the drug-transporting ABCB1 P-glycoprotein on the pharmacokinetics of drugs in humans. In fact, every new drug is now screened for transport by ABCB1, as this limits oral availability and penetration into sanctuaries protected by ABCB1, such as the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs.

              Transport by ATP-dependent efflux pumps such as P-glycoprotein is an increasingly recognized determinant of drug disposition. P-glycoprotein does not only contribute to multidrug resistance (MDR) in tumor cells, it is also expressed in normal tissues with excretory function such as liver, kidney and intestine. Apical expression of P-glycoprotein in such tissues results in reduced drug absorption from the gastrointestinal tract and enhanced drug elimination into bile and urine. Moreover, expression of P-glycoprotein in the endothelial cells of the blood-brain barrier prevents entry of certain drugs into the central nervous system. Human P-glycoprotein has been shown to transport a wide range of structurally unrelated drugs such as digoxin, quinidine, cyclosporine and HIV-1 protease inhibitors. Drug administration to P-glycoprotein knock-out and control mice provided data on the importance of P-glycoprotein for absorption after oral administration and penetration through the blood-brain barrier. Moreover, P-glycoprotein knock-out mice were used to identify inhibition of P-glycoprotein-mediated transport as a mechanism for drug interactions such as the digoxin-quinidine interaction. Studies in humans indicate a particular importance of intestinal P-glycoprotein for bioavailability of the immunosuppressant cyclosporine. Moreover, induction of intestinal P-glycoprotein by rifampin has now been identified as the major underlying mechanism of reduced digoxin plasma concentrations during concomitant rifampin therapy. In summary, P-glycoprotein functions as a defense mechanism, which determines bioavailability and CNS concentrations of drugs. Modification of P-glycoprotein function is an important underlying mechanism of drug interactions in humans. However, disposition of a drug and its metabolites frequently is not only determined by P-glycoprotein, but also by drug-metabolizing enzymes and possibly by drug transporters other than P-glycoprotein [e.g. members of the MRP family (MRP = multidrug resistance-associated proteins)].
                Bookmark

                Author and article information

                Journal
                J Vet Sci
                J. Vet. Sci
                JVS
                Journal of Veterinary Science
                The Korean Society of Veterinary Science
                1229-845X
                1976-555X
                January 2019
                24 January 2019
                : 20
                : 1
                : 27-33
                Affiliations
                School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.
                Author notes
                Corresponding author: Tel: +886-2-2739-6828; Fax: +886-2-2732-3817; lcwang@ 123456ntu.edu.tw

                The first two authors contributed equally to this work.

                Article
                10.4142/jvs.2019.20.1.27
                6351760
                30481983
                46a04aaa-5600-42ef-8b79-abd50ed5c786
                © 2019 The Korean Society of Veterinary Science

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 July 2018
                : 30 September 2018
                : 06 November 2018
                Funding
                Funded by: Ministry of Science and Technology, Taiwan, CrossRef https://doi.org/10.13039/501100004663;
                Award ID: 106-2622-B-002-010-CC2
                Categories
                Original Article

                Veterinary medicine
                canine,chemotherapy,mdr1 gene,oligonucleotide microarray,p-glycoprotein
                Veterinary medicine
                canine, chemotherapy, mdr1 gene, oligonucleotide microarray, p-glycoprotein

                Comments

                Comment on this article