7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultra-light \AA-scale Optimal Optical Reflectors

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-reflectance in many state-of-the-art optical devices is achieved with noble metals. However, metals are limited by losses, and for certain applications, by their high mass density. Using a combination of ab initio and optical transfer matrix calculations, we evaluate the behavior of graphene-based \AA-scale metamaterials and find that they could act as nearly-perfect reflectors in the mid-long wave infrared (IR) range. The low density of states for electron-phonon scattering and interband excitations leads to unprecedented optical properties for graphene heterostructures, especially alternating atomic layers of graphene and hexagonal boron nitride, at wavelengths greater than \(10~\mu\)m. At these wavelengths, these materials exhibit reflectivities exceeding 99.7% at a fraction of the weight of noble metals, as well as plasmonic mode confinement and quality factors that are greater by an order of magnitude compared to noble metals. These findings hold promise for ultra-compact optical components and waveguides for mid-IR applications. Moreover, unlike metals, the photonic properties of these heterostructures could be actively tuned via chemical and/or electrostatic doping, providing exciting possibilities for tunable devices.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electric Field Effect in Atomically Thin Carbon Films

            We report a naturally-occurring two-dimensional material (graphene that can be viewed as a gigantic flat fullerene molecule, describe its electronic properties and demonstrate all-metallic field-effect transistor, which uniquely exhibits ballistic transport at submicron distances even at room temperature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The electronic properties of graphene

              This article reviews the basic theoretical aspects of graphene, a one atom thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. We show that the Dirac electrons behave in unusual ways in tunneling, confinement, and integer quantum Hall effect. We discuss the electronic properties of graphene stacks and show that they vary with stacking order and number of layers. Edge (surface) states in graphene are strongly dependent on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. We also discuss how different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
                Bookmark

                Author and article information

                Journal
                20 July 2017
                Article
                1707.06717
                46a40b05-bec4-472e-b803-c4f7677febf6

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mes-hall physics.optics

                Comments

                Comment on this article