130
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium knowlesi: Reservoir Hosts and Tracking the Emergence in Humans and Macaques

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein ( csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium ( P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000–40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.

          Author Summary

          We recently described the first focus of human infections with P. knowlesi, a malaria parasite of monkeys, and subsequently reported that these infections can be fatal. Whether mosquito transmission of infection depended on the monkey reservoir or was maintained by the human population was unknown. In the area of highest human infection incidence (within the Kapit Division of Sarawak, Malaysian Borneo), we surveyed 108 wild monkeys and found most were infected with malaria parasites, including P. knowlesi. We observed that the number of P. knowlesi genotypes per infection was much higher in monkeys than humans, some genotypes were shared between the two hosts and no major types were associated exclusively with either host. Evolutionary analyses of sequence data indicate that P. knowlesi existed in monkeys prior to human settlement in Southeast Asia and underwent a recent population expansion. Thus, P. knowlesi is essentially zoonotic; humans being infected with these parasites from the original and reservoir monkey hosts probably since they first entered the forests of Southeast Asia. We consider that the current increase in the human population, coupled with ecological changes due to deforestation, could result in a switch to humans as the preferred host for this pathogenic Plasmodium species.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Arlequin (version 3.0): An integrated software package for population genetics data analysis

          Arlequin ver 3.0 is a software package integrating several basic and advanced methods for population genetics data analysis, like the computation of standard genetic diversity indices, the estimation of allele and haplotype frequencies, tests of departure from linkage equilibrium, departure from selective neutrality and demographic equilibrium, estimation or parameters from past population expansions, and thorough analyses of population subdivision under the AMOVA framework. Arlequin 3 introduces a completely new graphical interface written in C++, a more robust semantic analysis of input files, and two new methods: a Bayesian estimation of gametic phase from multi-locus genotypes, and an estimation of the parameters of an instantaneous spatial expansion from DNA sequence polymorphism. Arlequin can handle several data types like DNA sequences, microsatellite data, or standard multi-locus genotypes. A Windows version of the software is freely available on http://cmpg.unibe.ch/software/arlequin3.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution.

              A mismatch distribution is a tabulation of the number of pairwise differences among all DNA sequences in a sample. In a population that has been stationary for a long time these distributions from nonrecombinant DNA sequences become ragged and erratic, whereas a population that has been growing generates mismatch distributions that are smooth and have a peak. The position of the peak reflects the time of the population growth. The signature of an ancient population expansion is apparent even in the low-resolution mtDNA typings described by Merriwether et al. (1991). The smoothness of the mismatch distribution, an indicator of population expansion, is hardly affected by population structure, whereas mean sequence divergence increases in a pooled sample from highly isolated subpopulations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2011
                April 2011
                7 April 2011
                : 7
                : 4
                : e1002015
                Affiliations
                [1 ]Malaria Research Centre, Faculty of Medicine and Health Sciences, University Malaysia Sarawak, Kuching, Sarawak, Malaysia
                [2 ]Sarawak State Health Department, Kuching, Sarawak, Malaysia
                [3 ]Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
                [4 ]Centre for Infection, St. George's University of London, London, United Kingdom
                Case Western Reserve University, United States of America
                Author notes

                Conceived and designed the experiments: KSL DJC JCS BS. Performed the experiments: KSL PCSD SKZ RAJ. Analyzed the data: KSL PCSD SKZ DJC BS. Contributed reagents/materials/analysis tools: AM. Wrote the paper: KSL DJC JCS BS. Organized trapping and collection of macaque blood samples: AM. Assisted in securing permits for trapping wild macaques and in organising and supervising staff of Sarawak Health Department in obtaining macaque and human blood samples: AM.

                Article
                PPATHOGENS-D-10-00081
                10.1371/journal.ppat.1002015
                3072369
                21490952
                46b63fdd-63b4-4138-970c-5921e7a13ede
                Lee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 September 2010
                : 8 February 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Ecology
                Evolutionary Biology
                Organismal Evolution
                Zoology
                Parasitology
                Medicine
                Epidemiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article