6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nutrition, hormones, and breast cancer: Is insulin the missing link?

      Cancer Causes and Control
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Banting lecture 1988. Role of insulin resistance in human disease.

          G M Reaven (1988)
          Resistance to insulin-stimulated glucose uptake is present in the majority of patients with impaired glucose tolerance (IGT) or non-insulin-dependent diabetes mellitus (NIDDM) and in approximately 25% of nonobese individuals with normal oral glucose tolerance. In these conditions, deterioration of glucose tolerance can only be prevented if the beta-cell is able to increase its insulin secretory response and maintain a state of chronic hyperinsulinemia. When this goal cannot be achieved, gross decompensation of glucose homeostasis occurs. The relationship between insulin resistance, plasma insulin level, and glucose intolerance is mediated to a significant degree by changes in ambient plasma free-fatty acid (FFA) concentration. Patients with NIDDM are also resistant to insulin suppression of plasma FFA concentration, but plasma FFA concentrations can be reduced by relatively small increments in insulin concentration. Consequently, elevations of circulating plasma FFA concentration can be prevented if large amounts of insulin can be secreted. If hyperinsulinemia cannot be maintained, plasma FFA concentration will not be suppressed normally, and the resulting increase in plasma FFA concentration will lead to increased hepatic glucose production. Because these events take place in individuals who are quite resistant to insulin-stimulated glucose uptake, it is apparent that even small increases in hepatic glucose production are likely to lead to significant fasting hyperglycemia under these conditions. Although hyperinsulinemia may prevent frank decompensation of glucose homeostasis in insulin-resistant individuals, this compensatory response of the endocrine pancreas is not without its price. Patients with hypertension, treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic. In addition, a direct relationship between plasma insulin concentration and blood pressure has been noted. Hypertension can also be produced in normal rats when they are fed a fructose-enriched diet, an intervention that also leads to the development of insulin resistance and hyperinsulinemia. The development of hypertension in normal rats by an experimental manipulation known to induce insulin resistance and hyperinsulinemia provides further support for the view that the relationship between the three variables may be a causal one.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome.

            Hyperinsulinemia secondary to a poorly characterized disorder of insulin action is a feature of the polycystic ovary syndrome (PCO). However, controversy exists as to whether insulin resistance results from PCO or the obesity that is frequently associated with it. Thus, we determined in vivo insulin action on peripheral glucose utilization (M) and hepatic glucose production (HGP) with the euglycemic glucose-clamp technique in obese (n = 19) and nonobese (n = 10) PCO women and age- and body-composition-matched normal ovulatory women (n = 11 obese and n = 8 nonobese women). None had fasting hyperglycemia. Two obese PCO women had diabetes mellitus, established with an oral glucose tolerance test; no other women had impairment of glucose tolerance. However, the obese PCO women had significantly increased fasting and 2-h glucose levels after an oral glucose load and increased basal HGP compared with their body-composition-matched control group. There were statistically significant interactions between obesity and PCO in fasting glucose levels and basal HGP (P less than .05). Steady-state insulin levels of approximately 100 microU/ml were achieved during the clamp. Insulin-stimulated glucose utilization was significantly decreased in both PCO groups whether expressed per kilogram total weight (P less than .001) or per kilogram fat free mass (P less than .001) or when divided by the steady-state plasma insulin (l) level (M/l, P less than .001). There was residual HGP in 4 of 15 obese PCO, 0 of 11 obese normal, 2 of 10 nonobese PCO, and 0 of 8 nonobese normal women. The metabolic clearance rate of insulin did not differ in the four groups. We conclude that 1) PCO women have significant insulin resistance that is independent of obesity, changes in body composition, and impairment of glucose tolerance, 2) PCO and obesity have a synergistic deleterious effect on glucose tolerance, 3) hyperinsulinemia in PCO is not the result of decreased insulin clearance, and 4) PCO is associated with a unique disorder of insulin action.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices

                Bookmark

                Author and article information

                Journal
                Cancer Causes and Control
                Cancer Causes Control
                Springer Nature
                0957-5243
                1573-7225
                November 1996
                November 1996
                : 7
                : 6
                : 605-625
                Article
                10.1007/BF00051703
                46ba40c3-037a-4b7b-ab27-164147aee140
                © 1996
                History

                Comments

                Comment on this article