10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct contact of umbilical cord blood endothelial progenitors with living cardiac tissue is a requirement for vascular tube-like structures formation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The umbilical cord blood derived endothelial progenitor cells (EPCs) contribute to vascular regeneration in experimental models of ischaemia. However, their ability to participate in cardiovascular tissue restoration has not been elucidated yet. We employed a novel coculture system to investigate whether human EPCs have the capacity to integrate into living and ischaemic cardiac tissue, and participate to neovascularization. EPCs were cocultured with either living or ischaemic murine embryonic ventricular slices, in the presence or absence of a pro-angiogenic growth factor cocktail consisting of VEGF, IGF-1, EGF and bFGF. Tracking of EPCs within the cocultures was performed by cell transfection with green fluorescent protein or by immunostaining performed with anti-human vWF, CD31, nuclei and mitochondria antibodies. EPCs generated vascular tube-like structures in direct contact with the living ventricular slices. Furthermore, the pro-angiogenic growth factor cocktail reduced significantly tubes formation. Coculture of EPCs with the living ventricular slices in a transwell system did not lead to vascular tube-like structures formation, demonstrating that the direct contact is necessary and that the soluble factors secreted by the living slices were not sufficient for their induction. No vascular tubes were formed when EPCs were cocultured with ischaemic ventricular slices, even in the presence of the pro-angiogenic cocktail. In conclusion, EPCs form vascular tube-like structures in contact with living cardiac tissue and the direct cell-to-cell interaction is a prerequisite for their induction. Understanding the cardiac niche and micro-environmental interactions that regulate EPCs integration and neovascularization are essential for applying these cells to cardiovascular regeneration.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Mesenchymal progenitor cells in human umbilical cord blood.

          Haemopoiesis is sustained by two main cellular components, the haematopoietic cells (HSCs) and the mesenchymal progenitor cells (MPCs). MPCs are multipotent and are the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of HSCs in umbilical cord blood (UCB) is well known, that of MPCs has been not fully evaluated. In this study, we examined the ability of UCB harvests to generate in culture cells with characteristics of MPCs. Results showed that UCB-derived mononuclear cells, when set in culture, gave rise to adherent cells, which exhibited either an osteoclast- or a mesenchymal-like phenotype. Cells with the osteoclast phenotype were multinucleated, expressed TRAP activity and antigens CD45 and CD51/CD61. In turn, cells with the mesenchymal phenotype displayed a fibroblast-like morphology and expressed several MPC-related antigens (SH2, SH3, SH4, ASMA, MAB 1470, CD13, CD29 and CD49e). Our results suggest that preterm, as compared with term, cord blood is richer in mesenchymal progenitors, similar to haematopoietic progenitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A New Human Somatic Stem Cell from Placental Cord Blood with Intrinsic Pluripotent Differentiation Potential

            Here a new, intrinsically pluripotent, CD45-negative population from human cord blood, termed unrestricted somatic stem cells (USSCs) is described. This rare population grows adherently and can be expanded to 1015 cells without losing pluripotency. In vitro USSCs showed homogeneous differentiation into osteoblasts, chondroblasts, adipocytes, and hematopoietic and neural cells including astrocytes and neurons that express neurofilament, sodium channel protein, and various neurotransmitter phenotypes. Stereotactic implantation of USSCs into intact adult rat brain revealed that human Tau-positive cells persisted for up to 3 mo and showed migratory activity and a typical neuron-like morphology. In vivo differentiation of USSCs along mesodermal and endodermal pathways was demonstrated in animal models. Bony reconstitution was observed after transplantation of USSC-loaded calcium phosphate cylinders in nude rat femurs. Chondrogenesis occurred after transplanting cell-loaded gelfoam sponges into nude mice. Transplantation of USSCs in a noninjury model, the preimmune fetal sheep, resulted in up to 5% human hematopoietic engraftment. More than 20% albumin-producing human parenchymal hepatic cells with absence of cell fusion and substantial numbers of human cardiomyocytes in both atria and ventricles of the sheep heart were detected many months after USSC transplantation. No tumor formation was observed in any of these animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial progenitor cells: mobilization, differentiation, and homing.

              Postnatal bone marrow contains a subtype of progenitor cells that have the capacity to migrate to the peripheral circulation and to differentiate into mature endothelial cells. Therefore, these cells have been termed endothelial progenitor cells (EPCs). The isolation of EPCs by adherence culture or magnetic microbeads has been described. In general, EPCs are characterized by the expression of 3 markers, CD133, CD34, and the vascular endothelial growth factor receptor-2. During differentiation, EPCs obviously lose CD133 and start to express CD31, vascular endothelial cadherin, and von Willebrand factor. EPCs seem to participate in endothelial repair and neovascularization of ischemic organs. Clinical studies using EPCs for neovascularization have just been started; however, the mechanisms stimulating or inhibiting the differentiation of EPC in vivo and the signals causing their migration and homing to sites of injured endothelium or extravascular tissue are largely unknown at present. Thus, future studies will help to explore areas of potential basic research and clinical application of EPCs.
                Bookmark

                Author and article information

                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                jcmm
                Journal of Cellular and Molecular Medicine
                Blackwell Publishing Ltd (Oxford, UK )
                1582-1838
                1582-4934
                September 2011
                28 August 2011
                : 15
                : 9
                : 1914-1926
                Affiliations
                [a ]Institute of Cellular Biology and Pathology ‘Nicolae Simionescu’ Bucharest, Romania
                [b ]Institute for Neurophysiology, University of Cologne Cologne, Germany
                [c ]Department of Pediatric Cardiology, University of Cologne Cologne, Germany
                [d ]Department of Clinical Pathology, Cairo University Cairo, Egypt
                Author notes
                Prof. Jurgen HESCHELER, M.D., Institute for Neurophysiology, Robert-Koch-Strasse 39, D50931, Cologne, Germany. Tel.: +49-221-478-6960 Fax: +49-221-478-6965 E-mail: j.hescheler@ 123456uk-koeln.de Dr. Horia MANIU, Ph.D., Institute of Cellular Biology and Pathology “Nicolae Simionescu” 8 B.P. Hasdeu Str., Postal Code 050568, Bucharest, Romania. Tel.: +4021-319-4518 Fax: +4021-319-4519 E-mail: horia.maniu@ 123456icbp.ro

                Both authors contributed equally to this work.

                Article
                10.1111/j.1582-4934.2010.01197.x
                3918047
                21029374
                46c9250a-6546-4527-8889-1fad88f056af
                © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
                History
                : 05 May 2010
                : 21 September 2010
                Categories
                Articles

                Molecular medicine
                endothelial progenitors,umbilical cord blood,ventricular slices,vascular tube-like structures,cardiac ischaemia,cellular integration

                Comments

                Comment on this article