+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The microRNAs (miRNAs) play an important role in regulating myogenesis by targeting mRNA. However, the understanding of miRNAs in skeletal muscle development and diseases is unclear. In this study, we firstly performed the transcriptome profiling in differentiating C2C12 myoblast cells. Totally, we identified 187 miRNAs and 4260 mRNAs significantly differentially expressed that were involved in myoblast differentiation. We carried out validation of microarray data based on 5 mRNAs and 5 miRNAs differentially expressed and got a consistent result. Then we constructed and validated the significantly up- and down-regulated mRNA-miRNA interaction networks. Four interaction pairs (miR-145a-5p- Fscn1, miR-200c-5p- Tmigd1, miR-27a-5p- Sln and miR-743a-5p- Mob1b) with targeted relationships in differentiated myoblast cells were demonstrated. They are all closely related to myoblast development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated cell cycle signals important for exploring skeletal muscle development and disease. Functionally, we discovered that miR-743a targeting gene Mps One Binder Kinase Activator-Like 1B ( Mob1b) gene in differentiated C2C12. The up-regulated miR-743a can promote the differentiation of C2C12 myoblast. While the down-regulated Mob1b plays a negative role in differentiation. In addition, the expression profile of miR-743a and Mob1b are consistent with skeletal muscle recovery after Cardiotoxin (CTX) injury. Our study revealed that miR-743a-5p regulates myoblast differentiation by targeting Mob1b involved in skeletal muscle development and regeneration. Our findings made a further exploration for mechanisms in myogenesis and might provide potential possible miRNA-based target therapies for skeletal muscle regeneration and disease in the near future.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Metazoan MicroRNAs

          MicroRNAs (miRNAs) are ∼22 nt RNAs that direct posttranscriptional repression of mRNA targets in diverse eukaryotic lineages. In humans and other mammals, these small RNAs help sculpt the expression of most mRNAs. This article reviews advances in our understanding of the defining features of metazoan miRNAs and their biogenesis, genomics, and evolution. It then reviews how metazoan miRNAs are regulated, how they recognize and cause repression of their targets, and the biological functions of this repression, with a compilation of knockout phenotypes that shows that important biological functions have been identified for most of the broadly conserved miRNAs of mammals.
            • Record: found
            • Abstract: found
            • Article: not found

            The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.

            lin-4 is essential for the normal temporal control of diverse postembryonic developmental events in C. elegans. lin-4 acts by negatively regulating the level of LIN-14 protein, creating a temporal decrease in LIN-14 protein starting in the first larval stage (L1). We have cloned the C. elegans lin-4 locus by chromosomal walking and transformation rescue. We used the C. elegans clone to isolate the gene from three other Caenorhabditis species; all four Caenorhabditis clones functionally rescue the lin-4 null allele of C. elegans. Comparison of the lin-4 genomic sequence from these four species and site-directed mutagenesis of potential open reading frames indicated that lin-4 does not encode a protein. Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin-4 regulates lin-14 translation via an antisense RNA-RNA interaction.
              • Record: found
              • Abstract: found
              • Article: not found

              The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation.

              Understanding the molecular mechanisms that regulate cellular proliferation and differentiation is a central theme of developmental biology. MicroRNAs (miRNAs) are a class of regulatory RNAs of approximately 22 nucleotides that post-transcriptionally regulate gene expression. Increasing evidence points to the potential role of miRNAs in various biological processes. Here we show that miRNA-1 (miR-1) and miRNA-133 (miR-133), which are clustered on the same chromosomal loci, are transcribed together in a tissue-specific manner during development. miR-1 and miR-133 have distinct roles in modulating skeletal muscle proliferation and differentiation in cultured myoblasts in vitro and in Xenopus laevis embryos in vivo. miR-1 promotes myogenesis by targeting histone deacetylase 4 (HDAC4), a transcriptional repressor of muscle gene expression. By contrast, miR-133 enhances myoblast proliferation by repressing serum response factor (SRF). Our results show that two mature miRNAs, derived from the same miRNA polycistron and transcribed together, can carry out distinct biological functions. Together, our studies suggest a molecular mechanism in which miRNAs participate in transcriptional circuits that control skeletal muscle gene expression and embryonic development.

                Author and article information

                Genes Dis
                Genes Dis
                Genes & Diseases
                Chongqing Medical University
                03 December 2020
                July 2022
                03 December 2020
                : 9
                : 4
                : 1038-1048
                [a ]Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
                [b ]Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
                [c ]Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
                Author notes
                []Corresponding author. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China. tangzhonglin@ 123456caas.cn
                © 2020 Chongqing Medical University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                : 9 September 2020
                : 26 November 2020
                Full Length Article

                differentiation,mir-743a-5p,mob1b,myoblast,skeletal muscle,transcriptome


                Comment on this article