13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Invited review: Metabolic challenges and adaptation during different functional stages of the mammary gland in dairy cows: Perspectives for sustainable milk production

      ,
      Journal of Dairy Science
      American Dairy Science Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references174

          • Record: found
          • Abstract: not found
          • Article: not found

          Biology of Dairy Cows During the Transition Period: the Final Frontier?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Etiology of lipid-related metabolic disorders in periparturient dairy cows.

            R Grümmer (1993)
            Plasma NEFA concentrations increase prior to and at parturition, resulting in increased fatty acid uptake by the liver, fatty acid esterification, and triglyceride storage. Liver triglyceride concentration increases four- to fivefold between d 17 prior to calving and d 1 following calving. Increases in liver triglyceride following calving do not appear to be dramatic. Severity of fatty liver 1 d postpartum is correlated negatively with feed intake 1 d prepartum. Export of newly synthesized triglyceride as very low density lipoprotein occurs slowly in ruminants and is a major factor in the development of fatty liver. Nutritional strategies to minimize the elevation in plasma NEFA prior to calving results in lower liver triglyceride at calving. Fatty liver probably precedes clinical spontaneous ketosis. Liver triglyceride to glycogen ratio may be used to predict susceptibility of cows to ketosis. Consequently, strategies to reduce liver triglyceride at calving may decrease incidence of ketosis. Research to determine methods to reduce fatty acid delivery to the liver or to enhance hepatic export of very low density lipoprotein near calving is warranted. Identification of the cause for the slow rate of assembly and secretion of hepatic very low density lipoprotein in ruminants will be required to assess the feasibility of increasing export of very low density lipoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough.

              Gluconeogenesis is a crucial process to support glucose homeostasis when nutritional supply with glucose is insufficient. Because ingested carbohydrates are efficiently fermented to short-chain fatty acids in the rumen, ruminants are required to meet the largest part of their glucose demand by de novo genesis after weaning. The qualitative difference to nonruminant species is that propionate originating from ruminal metabolism is the major substrate for gluconeogenesis. Disposal of propionate into gluconeogenesis via propionyl-CoA carboxylase, methylmalonyl-CoA mutase, and the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK) has a high metabolic priority and continues even if glucose is exogenously supplied. Gluconeogenesis is regulated at the transcriptional and several posttranscriptional levels and is under hormonal control (primarily insulin, glucagon, and growth hormone). Transcriptional regulation is relevant for regulating precursor entry into gluconeogenesis (propionate, alanine and other amino acids, lactate, and glycerol). Promoters of the bovine pyruvate carboxylase (PC) and PEPCK genes are directly controlled by metabolic products. The final steps decisive for glucose release (fructose 1,6-bisphosphatase and glucose 6-phosphatase) appear to be highly dependent on posttranscriptional regulation according to actual glucose status. Glucogenic precursor entry, together with hepatic glycogen dynamics, is mostly sufficient to meet the needs for hepatic glucose output except in high-producing dairy cows during the transition from the dry period to peak lactation. Lactating cows adapt to the increased glucose requirement for lactose production by mobilization of endogenous glucogenic substrates and increased hepatic PC expression. If these adaptations fail, lipid metabolism may be altered leading to fatty liver and ketosis. Increasing feed intake and provision of glucogenic precursors from the diet are important to ameliorate these disturbances. An improved understanding of the complex mechanisms underlying gluconeogenesis may further improve our options to enhance the postpartum health status of dairy cows. © 2010 IUBMB.
                Bookmark

                Author and article information

                Journal
                Journal of Dairy Science
                Journal of Dairy Science
                American Dairy Science Association
                00220302
                April 2019
                April 2019
                : 102
                : 4
                : 2828-2843
                Article
                10.3168/jds.2018-15713
                30799117
                46cea80c-b3ce-46f8-bee2-2b1f6739622b
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article