+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast Neutrino Flavor Instability in the Neutron-star Convection Layer of Three-dimensional Supernova Models


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Neutrinos from a supernova (SN) might undergo fast flavor conversions near the collapsed stellar core. We perform a detailed study of this intriguing possibility, analyzing time-dependent state-of-the-art 3D SN models of 9 and 20 Msun. Both models were computed with multi-D three-flavor neutrino transport based on a two-moment solver, and both exhibit the presence of the lepton-number emission self-sustained asymmetry (LESA). The transport solution does not provide the angular distributions of the neutrino fluxes, which are crucial to track the fast flavor instability. To overcome this limitation, we use a recently proposed approach based on the angular moments of the energy-integrated electron lepton-number distribution. With this method we find the possibility of fast neutrino flavor instability at radii <~20 km, which is well interior to the neutrinosphere. Our results confirm recent observations in a 2D SN model and in 2D/3D models with fixed matter background, which were computed with Boltzmann neutrino transport. However, the flavor unstable locations are not isolated points as discussed previously, but thin skins surrounding volumes where electron antineutrinos are more abundant than electron neutrinos. These volumes grow with time and appear first in the convective layer of the proto-neutron star (PNS), where a decreasing electron fraction (Ye) and high temperatures favor the occurrence of regions with negative neutrino chemical potential. Since Ye remains higher in the LESA dipole direction, where convective lepton-number transport out from the nonconvective PNS core slows down the deleptonization, flavor unstable conditions become more widespread in the opposite hemisphere. This interesting phenomenon deserves further investigation, since its impact on SN modeling and possible consequences for SN dynamics and neutrino observations are presently unclear. (abridged)

          Related collections

          Author and article information

          30 November 2019

          Custom metadata
          20 pages, 13 figures
          astro-ph.HE hep-ph

          High energy & Particle physics, High energy astrophysical phenomena


          Comment on this article