58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An object simulation model for modeling hypothetical disease epidemics – EpiFlex

      product-review
      1 ,
      Theoretical Biology & Medical Modelling
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          EpiFlex is a flexible, easy to use computer model for a single computer, intended to be operated by one user who need not be an expert. Its purpose is to study in-silico the epidemic behavior of a wide variety of diseases, both known and theoretical, by simulating their spread at the level of individuals contracting and infecting others. To understand the system fully, this paper must be read together in conjunction with study of the software and its results. EpiFlex is evaluated using results from modeling influenza A epidemics and comparing them with a variety of field data sources and other types of modeling.

          EpiFlex is an object-oriented Monte Carlo system, allocating entities to correspond to individuals, disease vectors, diseases, and the locations that hosts may inhabit. EpiFlex defines eight different contact types available for a disease. Contacts occur inside locations within the model. Populations are composed of demographic groups, each of which has a cycle of movement between locations. Within locations, superspreading is defined by skewing of contact distributions.

          Results

          EpiFlex indicates three phenomena of interest for public health: (1) R 0 is variable, and the smaller the population, the larger the infected fraction within that population will be; (2) significant compression/synchronization between cities by a factor of roughly 2 occurs between the early incubation phase of a multi-city epidemic and the major manifestation phase; (3) if better true morbidity data were available, more asymptomatic hosts would be seen to spread disease than we currently believe is the case for influenza. These results suggest that field research to study such phenomena, while expensive, should be worthwhile.

          Conclusion

          Since EpiFlex shows all stages of disease progression, detailed insight into the progress of epidemics is possible. EpiFlex shows the characteristic multimodality and apparently random variation characteristic of real world data, but does so as an emergent property of a carefully constructed model of disease dynamics and is not simply a stochastic system. EpiFlex can provide a better understanding of infectious diseases and strategies for response.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Modelling disease outbreaks in realistic urban social networks.

          Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases.

            A wide range of communicable human diseases can be considered as spreading through a network of possible transmission routes. The implied network structure is vital in determining disease dynamics, especially when the average number of connections per individual is small as is the case for many sexually transmitted diseases (STDs). Here we develop an intuitive mathematical framework to deal with the heterogeneities implicit within contact networks and those that arise because of the infection process. These models are compared with full stochastic simulations and show excellent agreement across a wide range of parameters. We show how such models can be used to estimate parameters of epidemiological importance, and how they can be extended to examine the effectiveness of various control strategies, in particular screening programs and contact tracing.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A mathematical model for the global spread of influenza

                Bookmark

                Author and article information

                Journal
                Theor Biol Med Model
                Theoretical Biology & Medical Modelling
                BioMed Central (London )
                1742-4682
                2006
                23 August 2006
                : 3
                : 32
                Affiliations
                [1 ]BW Education and Forensics, 2710 Thomes Avenue, Cheyenne, Wyoming 82001, USA
                Article
                1742-4682-3-32
                10.1186/1742-4682-3-32
                1570461
                16928271
                46d1d3c8-aac9-4087-b776-8ddc9b0ec19b
                Copyright © 2006 Hanley; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 June 2006
                : 23 August 2006
                Categories
                Software

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article