24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the carbon emissions associated with tropical deforestation. This study proposes a method to overcome the saturation at high AGB values of existing AGB map (Vieilledent's AGB map) by using a map of correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data. The Vieilledent's AGB map of Madagascar was established using optical images, with parameters calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density of 0.52 footprint/km 2. Second, the difference between the AGB from the Vieilledent's AGB map and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by taking into account the spatial structure of these additional correction factors to provide a continuous correction factor map. Finally, the existing and the correction factor maps were summed to improve the Vieilledent's AGB map. The results showed that the integration of GLAS data improves the precision of Vieilledent's AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE on AGB estimates decreases from 81 t/ha (R 2 = 0.62) to 74.1 t/ha (R 2 = 0.71). Most importantly, we showed that this approach using LiDAR data avoids underestimating high biomass values (new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach).

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Lidar Remote Sensing for Ecosystem Studies

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            An integrated pan‐tropical biomass map using multiple reference datasets

            We combined two existing datasets of vegetation aboveground biomass (AGB) (Proceedings of the National Academy of Sciences of the United States of America, 108, 2011, 9899; Nature Climate Change, 2, 2012, 182) into a pan-tropical AGB map at 1-km resolution using an independent reference dataset of field observations and locally calibrated high-resolution biomass maps, harmonized and upscaled to 14 477 1-km AGB estimates. Our data fusion approach uses bias removal and weighted linear averaging that incorporates and spatializes the biomass patterns indicated by the reference data. The method was applied independently in areas (strata) with homogeneous error patterns of the input (Saatchi and Baccini) maps, which were estimated from the reference data and additional covariates. Based on the fused map, we estimated AGB stock for the tropics (23.4 N-23.4 S) of 375 Pg dry mass, 9-18% lower than the Saatchi and Baccini estimates. The fused map also showed differing spatial patterns of AGB over large areas, with higher AGB density in the dense forest areas in the Congo basin, Eastern Amazon and South-East Asia, and lower values in Central America and in most dry vegetation areas of Africa than either of the input maps. The validation exercise, based on 2118 estimates from the reference dataset not used in the fusion process, showed that the fused map had a RMSE 15-21% lower than that of the input maps and, most importantly, nearly unbiased estimates (mean bias 5 Mg dry mass ha(-1) vs. 21 and 28 Mg ha(-1) for the input maps). The fusion method can be applied at any scale including the policy-relevant national level, where it can provide improved biomass estimates by integrating existing regional biomass maps as input maps and additional, country-specific reference datasets.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon

              J. Means (1999)
                Bookmark

                Author and article information

                Journal
                2017-03-07
                Article
                10.3390/rs9030213
                1703.03432
                46d6373e-2bad-4e4e-bba9-ac9332001f5d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                Remote Sensing, MDPI, 2017, 9, pp.213 - 213
                q-bio.OT
                ccsd

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article