8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) possess pro-regenerative potential in different animal models with renal injury. EVs contain different molecules, including proteins, lipids and nucleic acids. Among the shuttled molecules, miRNAs have a relevant role in the pro-regenerative effects of EVs and are a promising target for therapeutic interventions. The aim of this study was to increase the content of specific miRNAs in EVs that are known to be involved in the pro-regenerative effect of EVs, and to assess the capacity of modified EVs to contribute to renal regeneration in in vivo models with acute kidney injuries. To this purpose, MSCs were transiently transfected with specific miRNA mimics by electroporation. Molecular analyses showed that, after transfection, MSCs and derived EVs were efficiently enriched in the selected miRNAs. In vitro and in vivo experiments indicated that EVs engineered with miRNAs maintained their pro-regenerative effects. Of relevance, engineered EVs were more effective than EVs derived from naïve MSCs when used at suboptimal doses. This suggests the potential use of a low amount of EVs (82.5 × 10 6) to obtain the renal regenerative effect.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model

          OBJECTIVES: Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS: SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS: Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS: These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biodistribution of mesenchymal stem cell-derived extracellular vesicles in a model of acute kidney injury monitored by optical imaging

            Mesenchymal stem cells (MSCs) contribute to the recovery of tissue injury, providing a paracrine support. Cell-derived extracellular vesicles (EVs), carrying membrane and cytoplasmatic constituents of the cell of origin, have been described as a fundamental mechanism of intercellular communication. We previously demonstrated that EVs derived from human MSCs accelerated recovery following acute kidney injury (AKI) in vivo. The aim of the present study was to investigate the biodistribution and the renal localization of EVs in AKI. For this purpose, two methods for EV labeling suitable for in vivo tracking with optical imaging (OI), were employed using near infrared (NIR) dye (DiD): i) labeled EVs were generated by MSCs pre-incubated with NIR dye and collected from cell supernatants; ii) purified EVs were directly labeled with NIR dye. EVs obtained with these two procedures were injected intravenously (i.v.) into mice with glycerol-induced AKI and into healthy mice to compare the efficacy of the two labeling methods for in vivo detection of EVs at the site of damage. We found that the labeled EVs accumulated specifically in the kidneys of the mice with AKI compared with the healthy controls. After 5 h, the EVs were detectable in whole body images and in dissected kidneys by OI with both types of labeling procedures. The directly labeled EVs showed a higher and brighter fluorescence compared with the labeled EVs produced by cells. The signal generated by the directly labeled EVs was maintained in time, but provided a higher background than that of the labeled EVs produced by cells. The comparison of the two methods indicated that the latter displayed a greater specificity for the injured kidney.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs.

              Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell-promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 May 2019
                May 2019
                : 20
                : 10
                : 2381
                Affiliations
                [1 ]Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; marta.tapparo@ 123456unito.it (M.T.); stefania.bruno@ 123456unito.it (S.B.); gabriele.togliatto@ 123456unito.it (G.T.)
                [2 ]Department of Biomedical Sciences and Paediatric Research Institute “Citta della Speranza”, University of Padova, 35129 Padova, Italy; federica.collino@ 123456unipd.it
                [3 ]2i3T Società per la gestione dell’incubatore di imprese e per il trasferimento tecnologico Scarl, University of Torino, 10126 Torino, Italy; mariachiara.deregibus@ 123456unito.it
                [4 ]Department of Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; paolo.provero@ 123456unito.it
                [5 ]Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, RI 02912, USA; swen@ 123456lifespan.org (S.W.); PQuesenberry@ 123456lifespan.org (P.J.Q.)
                Author notes
                [* ]Correspondence: giovanni.camussi@ 123456unito.it ; Tel.: +39-011-670-9588
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-3619-7701
                Article
                ijms-20-02381
                10.3390/ijms20102381
                6567878
                31091699
                46da8702-8ed5-4ebe-8b67-b3a8a9111f29
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 April 2019
                : 10 May 2019
                Categories
                Article

                Molecular biology
                mesenchymal stromal cells,extracellular vesicles,acute kidney injury,modified-mscs,microrna

                Comments

                Comment on this article