47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hair loss is a common medical problem. In this study, we investigated the proliferation, migration, and growth factor expression of human dermal papilla (DP) cells in the presence or absence of treatment with mesenchymal stem cell extracellular vesicles (MSC-EVs). In addition, we tested the efficacy of MSC-EV treatment on hair growth in an animal model. MSC-EV treatment increased DP cell proliferation and migration, and elevated the levels of Bcl-2, phosphorylated Akt and ERK. In addition; DP cells treated with MSC-EVs displayed increased expression and secretion of VEGF and IGF-1. Intradermal injection of MSC-EVs into C57BL/6 mice promoted the conversion from telogen to anagen and increased expression of wnt3a, wnt5a and versican was demonstrated. The first time our results suggest that MSC-EVs have a potential to activate DP cells, prolonged survival, induce growth factor activation in vitro, and promotes hair growth in vivo.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Bovine milk-derived exosomes for drug delivery.

          Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction and uptake of exosomes by ovarian cancer cells

            Background Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. Methods SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. Results In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. Conclusions In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to the knowledge about the properties and dynamics of exosomes in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WNT signals are required for the initiation of hair follicle development.

              Hair follicle morphogenesis is initiated by a dermal signal that induces the development of placodes in the overlying epithelium. To determine whether WNT signals are required for initiation of follicular development, we ectopically expressed Dickkopf 1, a potent diffusible inhibitor of WNT action, in the skin of transgenic mice. This produced a complete failure of placode formation prior to morphological or molecular signs of differentiation, and blocked tooth and mammary gland development before the bud stage. This phenotype indicates that activation of WNT signaling in the skin precedes, and is required for, localized expression of regulatory genes and initiation of hair follicle placode formation.
                Bookmark

                Author and article information

                Contributors
                abc2000@knu.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                14 November 2017
                14 November 2017
                2017
                : 7
                : 15560
                Affiliations
                [1 ]ISNI 0000 0001 0661 1556, GRID grid.258803.4, Department of Nuclear Medicine, Kyungpook National University School of Medicine/Hospital, ; Daegu, 700-721 Republic of Korea
                [2 ]ISNI 0000 0001 0661 1556, GRID grid.258803.4, Department of Immunology, Kyungpook National University School of Medicine, ; Daegu, 700-721 Republic of Korea
                Author information
                http://orcid.org/0000-0001-6987-0854
                http://orcid.org/0000-0002-0658-4604
                Article
                15505
                10.1038/s41598-017-15505-3
                5686117
                29138430
                46dd7cf2-e588-46d1-8f1f-fd049577eae1
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 July 2017
                : 27 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article