+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human papillomavirus molecular biology and disease association

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal species including humans. Viruses that have co‐evolved slowly in this way typically cause chronic inapparent infections, with virion production in the absence of apparent disease. This is the case for many Beta and Gamma HPV types. The Alpha papillomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas. These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent environment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7, and E5 proteins. High‐risk E6 and E7 proteins differ from their low‐risk counterparts however in being able to drive cell cycle entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot resolve high‐risk HPV infection. Most work to date has focused on the study of high‐risk HPV types such as HPV 16 and 18, which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones) and toward understanding the mechanisms by which low‐risk HPV types can sometimes give rise to papillomatosis and under certain situations even cancers. Copyright © 2015 John Wiley & Sons, Ltd.

          Related collections

          Most cited references 241

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiologic classification of human papillomavirus types associated with cervical cancer.

          Infection with human papilloma virus (HPV) is the main cause of cervical cancer, but the risk associated with the various HPV types has not been adequately assessed. We pooled data from 11 case-control studies from nine countries involving 1918 women with histologically confirmed squamous-cell cervical cancer and 1928 control women. A common protocol and questionnaire were used. Information on risk factors was obtained by personal interviews, and cervical cells were collected for detection of HPV DNA and typing in a central laboratory by polymerase-chain-reaction-based assays (with MY09/MY11 and GP5+/6+ primers). HPV DNA was detected in 1739 of the 1918 patients with cervical cancer (90.7 percent) and in 259 of the 1928 control women (13.4 percent). With the GP5+/6+ primer, HPV DNA was detected in 96.6 percent of the patients and 15.6 percent of the controls. The most common HPV types in patients, in descending order of frequency, were types 16, 18, 45, 31, 33, 52, 58, and 35. Among control women, types 16, 18, 45, 31, 6, 58, 35, and 33 were the most common. For studies using the GP5+/6+ primer, the pooled odds ratio for cervical cancer associated with the presence of any HPV was 158.2 (95 percent confidence interval, 113.4 to 220.6). The odds ratios were over 45 for the most common and least common HPV types. Fifteen HPV types were classified as high-risk types (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82); 3 were classified as probable high-risk types (26, 53, and 66); and 12 were classified as low-risk types (6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, and CP6108). There was good agreement between our epidemiologic classification and the classification based on phylogenetic grouping. In addition to HPV types 16 and 18, types 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 should be considered carcinogenic, or high-risk, types, and types 26, 53, and 66 should be considered probably carcinogenic. Copyright 2003 Massachusetts Medical Society
            • Record: found
            • Abstract: found
            • Article: not found

            Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study.

            Knowledge about the distribution of human papillomavirus (HPV) genotypes in invasive cervical cancer is crucial to guide the introduction of prophylactic vaccines. We aimed to provide novel and comprehensive data about the worldwide genotype distribution in patients with invasive cervical cancer. Paraffin-embedded samples of histologically confirmed cases of invasive cervical cancer were collected from 38 countries in Europe, North America, central South America, Africa, Asia, and Oceania. Inclusion criteria were a pathological confirmation of a primary invasive cervical cancer of epithelial origin in the tissue sample selected for analysis of HPV DNA, and information about the year of diagnosis. HPV detection was done by use of PCR with SPF-10 broad-spectrum primers followed by DNA enzyme immunoassay and genotyping with a reverse hybridisation line probe assay. Sequence analysis was done to characterise HPV-positive samples with unknown HPV types. Data analyses included algorithms of multiple infections to estimate type-specific relative contributions. 22,661 paraffin-embedded samples were obtained from 14,249 women. 10,575 cases of invasive cervical cancer were included in the study, and 8977 (85%) of these were positive for HPV DNA. The most common HPV types were 16, 18, 31, 33, 35, 45, 52, and 58 with a combined worldwide relative contribution of 8196 of 8977 (91%, 95% CI 90-92). HPV types 16 and 18 were detected in 6357 of 8977 of cases (71%, 70-72) of invasive cervical cancer. HPV types 16, 18, and 45 were detected in 443 of 470 cases (94%, 92-96) of cervical adenocarcinomas. Unknown HPV types that were identified with sequence analysis were 26, 30, 61, 67, 69, 82, and 91 in 103 (1%) of 8977 cases of invasive cervical cancer. Women with invasive cervical cancers related to HPV types 16, 18, or 45 presented at a younger mean age than did those with other HPV types (50·0 years [49·6-50·4], 48·2 years [47·3-49·2], 46·8 years [46·6-48·1], and 55·5 years [54·9-56·1], respectively). To our knowledge, this study is the largest assessment of HPV genotypes to date. HPV types 16, 18, 31, 33, 35, 45, 52, and 58 should be given priority when the cross-protective effects of current vaccines are assessed, and for formulation of recommendations for the use of second-generation polyvalent HPV vaccines. Our results also suggest that type-specific high-risk HPV-DNA-based screening tests and protocols should focus on HPV types 16, 18, and 45. Copyright © 2010 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: not found
              • Article: not found

              A review of human carcinogens--Part B: biological agents.


                Author and article information

                [ 1 ] Department of PathologyUniversity of Cambridge CambridgeUK
                Author notes
                [* ] Correspondence to: J. Doorbar, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.

                E‐mail: jd121@

                Rev Med Virol
                Rev. Med. Virol
                Reviews in Medical Virology
                John Wiley and Sons Inc. (Hoboken )
                06 March 2015
                March 2015
                : 25
                : Suppl Suppl 1 ( doiID: 10.1002/rmv.v25.S1 )
                : 2-23
                25752814 5024016 10.1002/rmv.1822 RMV1822
                © 2015 The Authors. Reviews in Medical Virology Published by John Wiley & Sons, Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                Pages: 22
                HPV Associated Cancer. This supplement has been published without financial support
                Custom metadata
                March 2015
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.9.4 mode:remove_FC converted:15.09.2016

                Microbiology & Virology


                Comment on this article