0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polycrystalline graphene and metallic nanowires (NWs) have been proposed to replace indium tin oxide (ITO), the most widely used transparent electrode (TE) film on the market. However, the trade-off between optical transparency (Topt) and electrical sheet resistance (Rs) of these materials taken alone makes them difficult to compete with ITO. In this paper, we show that, by hot-press transfer of graphene monolayer on Ag NWs, the resulting combined structure benefits from the synergy of the two materials, giving a Topt-Rs trade-off better than that expected by simply adding the single material contributions Ag NWs bridge any interruption in transferred graphene, while graphene lowers the contact resistance among neighboring NWs and provides local conductivity in the uncovered regions in-between NWs. The hot-pressing not only allows graphene transfer but also compacts the NWs joints, thus reducing contact resistance. The dependence on the initial NW concentration of the effects produced by the hot press process on its own and the graphene transfer using hot press was investigated and indicates that a low concentration is more suitable for the proposed geometry. A TE film with Topt of 90% and Rs of 14 Ω/sq is demonstrated, also on a flexible glass substrate about 140 μm thick, a very attractive platform for efficient flexible electronic and photonic devices.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Nov 27 2013
          : 5
          : 22
          Affiliations
          [1 ] ICFO-Institut de Ciencies Fotoniques , Mediterranean Technology Park, Castelldefels, Barcelona 08860, Spain.
          Article
          10.1021/am403440n
          24164641
          46e2ba46-9066-4a15-9e21-f462d42eed0c
          History

          Comments

          Comment on this article