25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Somatic cell nuclear transfer (SCNT) is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs) as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination.

          Results

          PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs) and porcine ear fibroblasts (PEFs) could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the Nucleofector TM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT.

          Conclusion

          The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Gene transfer into mouse lyoma cells by electroporation in high electric fields.

          Electric impulses (8 kV/cm, 5 microseconds) were found to increase greatly the uptake of DNA into cells. When linear or circular plasmid DNA containing the herpes simplex thymidine kinase (TK) gene is added to a suspension of mouse L cells deficient in the TK gene and the cells are then exposed to electric fields, stable transformants are formed that survive in the HAT selection medium. At 20 degrees C after the application of three successive electric impulses followed by 10 min to allow DNA entry there result 95 (+/- 3) transformants per 10(6) cells and per 1.2 micrograms DNA. Compared with biochemical techniques, the electric field method of gene transfer is very simple, easily applicable, and very efficient. Because the mechanism of DNA transport through cell membranes is not known, a simple physical model for the enhanced DNA penetration into cells in high electric fields is proposed. According to this ' electroporation model' the interaction of the external electric field with the lipid dipoles of a pore configuration induces and stabilizes the permeation sites and thus enhances cross membrane transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.

            A DNA-transfection protocol has been developed that makes use of a synthetic cationic lipid, N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA). Small unilamellar liposomes containing DOTMA interact spontaneously with DNA to form lipid-DNA complexes with 100% entrapment of the DNA, DOTMA facilitates fusion of the complex with the plasma membrane of tissue culture cells, resulting in both uptake and expression of the DNA. The technique is simple, highly reproducible, and effective for both transient and stable expression of transfected DNA. Depending upon the cell line, lipofection is from 5- to greater than 100-fold more effective than either the calcium phosphate or the DEAE-dextran transfection technique.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloned pigs produced by nuclear transfer from adult somatic cells.

              Since the first report of live mammals produced by nuclear transfer from a cultured differentiated cell population in 1995 (ref. 1), successful development has been obtained in sheep, cattle, mice and goats using a variety of somatic cell types as nuclear donors. The methodology used for embryo reconstruction in each of these species is essentially similar: diploid donor nuclei have been transplanted into enucleated MII oocytes that are activated on, or after transfer. In sheep and goat pre-activated oocytes have also proved successful as cytoplast recipients. The reconstructed embryos are then cultured and selected embryos transferred to surrogate recipients for development to term. In pigs, nuclear transfer has been significantly less successful; a single piglet was reported after transfer of a blastomere nucleus from a four-cell embryo to an enucleated oocyte; however, no live offspring were obtained in studies using somatic cells such as diploid or mitotic fetal fibroblasts as nuclear donors. The development of embryos reconstructed by nuclear transfer is dependent upon a range of factors. Here we investigate some of these factors and report the successful production of cloned piglets from a cultured adult somatic cell population using a new nuclear transfer procedure.
                Bookmark

                Author and article information

                Journal
                BMC Biotechnol
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central
                1472-6750
                2012
                9 November 2012
                : 12
                : 84
                Affiliations
                [1 ]Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, Munich, 81377, Germany
                [2 ]Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
                Article
                1472-6750-12-84
                10.1186/1472-6750-12-84
                3537537
                23140586
                46f1e820-aad6-4935-8b0f-eeef56d11a33
                Copyright ©2012 Richter et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 May 2012
                : 4 November 2012
                Categories
                Research Article

                Biotechnology
                nuclear transfer,fibroblasts,pig,genetic engineering,primary kidney cells
                Biotechnology
                nuclear transfer, fibroblasts, pig, genetic engineering, primary kidney cells

                Comments

                Comment on this article